
THE DEFORMATION QUANTIZATION IN THE CONTEXT

OF KONTSEVICH

FRANK KLINKER

Abstract. We describe the quantization procedure proposed by Kont-
sevich cf. [6].

1. On the tensor product of graded spaces, the décalage
isomorphism

Let Vj =
⊕

i∈Z V
(i)
j be Z-graded vector spaces for j = 1, . . . , n and denote

by Vj [k] the Z-graded vector spaces obtained by the shift by k, i.e. Vj [k](i) :=

V
(i+k)
j . This may be rephrased in

Vj [k] = Vj ⊗R[k] with R[k](l) =

{
R l = −k
0 else

. (1)

Consider the following isomorphism

V1[k1]⊗ · · · ⊗ Vn[kn] '
(
V1 ⊗ · · · ⊗ Vn

)
[k1 + · · ·+ kn]

v
(α1)
1 ⊗ . . .⊗ v(αn)

n 7→ (−)α2k1+α3(k1+k2)+···+αn(k1+···+kn−1)v
(α1)
1 ⊗ . . .⊗ v(αn)

n .
(2)

The sign in this formula can be formally constructed by rearranging the
following tuple

(α1, k1;α2, k2; . . . ;αn−1, kn−1;αn, kn)→ (α1, · · · , αn; k1, · · · , kn) .

In particular, Vj = V and kj = 1 gives

V [1]⊗n ' V ⊗n[n]

v
(α1)
1 ⊗ . . .⊗ v(αn)

n 7→(−)

n∑
j=1

(j−1)αj
v

(α1)
1 ⊗ . . .⊗ v(αn)

n (3)

= (−)
α2+α4+···+α2[n2 ]v

(α1)
1 ⊗ . . .⊗ v(αn)

n
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This has the following consequence on the symmetrized resp. anti-symmetrized
tensor products

Sn(V [1]) ' (ΛnV )[n] , (4)

To prove this we have to show the compatibility of the product structures
with (2):

v
(α1)
1 ∨ . . . ∨ v(αn)

n = (−)
(αi−1)

i−1∑
j=1

(αj−1)

v
(αi)
i ∨ v(α1)

1 ∨ . . . ∨ v̂(αi)
i ∨ . . . ∨ v(αn)

ny(2)

(−)
∑n
j=1(j−1)αjv

(α1)
1 ∧ . . . ∧ v(αn)

n =

= (−)

n∑
j=1

(j−1)αj
(−)i−1(−)

αi
i−1∑
j=1

αj
v

(αi)
i ∧ v(α1)

1 ∧ . . . ∧ v̂(αi)
i ∧ . . . ∧ v(αn)

n

The sign (−)

i−1∑
j=1

jαj+
n∑

j=i+1
(j−1)αj

arises when we compare the two right hand
sides due to (2). This is the proof of (4) because

n∑
j=1

(j − 1)αj + (i− 1) + αi

i−1∑
j=1

αj

≡ (αi − 1)

i−1∑
j=1

(αj − 1) +

i−1∑
j=1

jαj +

n∑
j=i+1

(j − 1)αj mod 2 . (5)

2. Co-Algebras, DGLAs, L∞-algebras and associated
structures

A differential graded Lie algebra (DGLA) is a triple (g, [·, ·], d) con-
sisting of a Z-graded vector space g, a graded anti-symmetric bilinear map
[·, ·] : g × g → g of degree zero and a linear map d : g → g of degree one.
The bracket obeys the graded Jacobi identity

(−)zx[x, [y, z]] + (−)zy[z, [x, y]] + (−)xy[y, [z, x]] = 0 (6)

and the map d is a differential, i.e. d2 = 0 and it is compatible with the
bracket:

d[x, y] = [dx, y] + (−)x[x, dy] . (7)

The Jacobi identity (6) can be reformulated as adx([y, z]) = [adx(y), z] +
(−)xy[y, adx(z)]. In this way adx is a derivation of degree |x|.

A Z-graded co-algebra (without unit) is a Z-graded vector space A =⊕
k∈ZA(k) with a co-multiplication ∆ : A → A⊗A of degree zero which



THE DEFORMATION QUANTIZATION IN THE CONTEXT OF KONTSEVICH 3

is associative in the following sense:

A⊗A ∆⊗id //

	

A⊗A⊗A

A

∆

OO

∆ // A⊗A

id⊗∆

OO

For example the tensor algebra T (V ) =
⊕

n≥0 V
⊗n of a Z-graded vector

space V =
⊕

k∈Z V
(k) is a co-algebra with

∆(v1 ⊗ · · · ⊗ vn) =

= 1⊗(v1⊗· · ·⊗vn)+

n−1∑
r=1

(v1⊗. . .⊗vr)⊗(vr+1⊗· · ·⊗vn)+(v1⊗· · ·⊗vn)⊗1.

(8)

This induces a of co-algebra structure on S(V ) = T (V )/{v⊗w−(−)vww⊗v},
too.

A differential on a co-algebra is a linear map Q with Q2 = 0 which is
compatible with the co-multiplication in the following sense. For ∆(x) =∑
x1
i ⊗ x2

i we have

∆ ◦Q(x) = (Q⊗ id) ◦∆(x) +
∑

(−)x
1
i (id⊗Q)(x1

i ⊗ x2
i ). (9)

An L∞-algebra is pair (g, Q) where g is a Z-graded vector space and Q is
a graded co-algebra differential on S(g[1]).

The differential Q can be uniquely described by its Taylor coefficients Qk :
Sk(g[1])→ g[1] of degree 1. They are given by

Q(v1 ∨ · · · ∨ vn) =

=
n∑
k=1

∑
σ∈Sn

(
n
k

)
n!
ε(vσ(1), . . . , vσ(n))Qk(vσ(1)∨· · ·∨vσ(k))∨vσ(k+1)∨· · ·∨vσ(n),

(10)

where ε(vi1 , . . . , vin) is the sign which we obtain when we bring back the
vectors in the right order.

The condition Q2 = 0 translates to the coefficients into a series of equations
of which the first three are given by1

0 = Q2
1(v) , (11)

0 = Q1 ◦Q2(v ∨ w) +Q2(Q1(v) ∨ w) + (−)vQ2(v ∨Q1(w)) , (12)

1The degrees are taken in g[1].
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and

Q2(Q2(v∨w)∨ z) + (−)zwQ2(Q2(v∨ z)∨w) + (−)v(w+z)Q2(Q2(w∨ z)∨v)

= Q1 ◦Q3(v ∨ w ∨ z) +Q3(Q1(v) ∨ w ∨ z) + (−)vwQ3(Q1(w) ∨ v ∨ z)

+ (−)z(v+w)Q3(Q1(z) ∨ v ∨ w) . (13)

Because of the décalage isomorphism (4) the Qk can be seen as degree zero
maps

Qk : Λk(g)→ g[2− n] . (14)

An L∞-morphism between two L∞-algebras (g, Qg) and (h, Qh) is a de-
gree zero co-algebra morphism U : S(g[1]) → S(h[1]) compatible with the
differential, i.e.

U ◦Qg = Qh ◦ U . (15)

As in the case of the differential, an L∞-morphism is uniquely described by
its Taylor coefficients Uk : Sk(g[1])→ h[1] of degree zero. They are explicitly
given by

U(v1 ∨ · · · ∨ vn) =
∑
r≥1

1

r!

∑
I1∪···∪Ir={1,...n}

kj :=|Ij |≥1

ε(vi1 . . . , vin)·

· Uk1(vi1 ∨ · · · ∨ vik1
) ∨ · · · ∨ Ukr(vik−kr+1

∨ · · · ∨ vin)

=
∑
r≥1

1

r!

∑
k1+···+kr=n

1

k1! · · · kr!
∑
σ∈Sn

ε(vσ(1), . . . , vσ(n))·

· Uk1(vσ(1) ∨ · · · ∨ vσ(k1)) ∨ · · · ∨ Ukr(vσ(k−kr+1) ∨ · · · ∨ vσ(n)) .

The compatibility condition (15) written in the Taylor coefficients of Q and
U gives an infinite series of equations of which the first two are given by

Qh
1 ◦ U1(v) = U1 ◦Qg

1(v) ,

Qh
1 ◦ U2(v ∨ w)− U2(Qg

1(v) ∨ w)− (−)vU2(v ∧Qh
1(w)) =

= U1 ◦Qg
2(v ∧ w)−Qh

2(U1(v) ∧ U1(w)) .

(16)

As before we can treat the Taylor coefficients as maps

Uk : Λk(g)→ h[1− n] (17)

due to (4).

We see that the first Taylor coefficient of U gives rise to a morphism of
complexes

U1 : (g, Qg
1)→ (h, Qh

1) . (18)

and so induces a morphism on cohomology level. An L∞-morphism U is
called quasi-isomorphism if U1 is an isomorphism on the level of coho-
mologies. An L∞-algebra is called formal if it is quasi-isomorphic to its
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cohomology (with respect to Q1) considered as L∞-algebra with induced Q2

and Qi = 0 for i 6= 2, i.e.(
g, Q = (Q1, Q2, . . .)

) q.i.
'

(
H∗(g, Q1), Q = (0, (Q2)ind, 0, . . .)

)
.

Quasi-isomorphism is an equivalence relation, i.e. for two L∞-algebras and a
quasi-isomorphism U : (g, Qg)→ (h, Qh) there exists an extension of the map

Ũ1 := U−1
1 on cohomology level to an L∞-morphism Ũ : (h, Qh)→ (g, Qg).

3. The basic examples of L∞-algebras

Every DGLA gives rise to an L∞-algebra via the definitions

Q1 := d, Q2 := [·, ·], Qk := 0 for k ≥ 3 . (19)

To be more precise, we have to take into account the décalage when changing
from g to g[1]. The exact translation for the structures is

Q1(v) = (−)vdv and Q2(v ∨ w) = (−)v(w−1)[v, w] (20)

where the degrees have been taken in g.

The conditions (11)-(13 are translated in the following way. We have

Q1(Q2(v ∨ w)) = (−)v(w−1)(−)v+wd[v, w] = (−)vw+wd[v, w] ,

Q2(Q1(v) ∨ w) = (−)v(−)(v+1)(w−1)[dv, w] = − (−)vw+w[dv, w] ,

(−)v+1Q2(v ∨Q1(w)) = (−)v+1(−)w(−)vw[v, dw] = − (−)v(−)vw+w[v, dw] .

Adding these three lines after multiplying by (−)w+vw yields

d[v, w]− [dv, w]− (−)v[v, dw] = 0 (21)

which is exactly (7). Furthermore,

Q2(Q2(v ∨ w) ∨ z) = (−)v(w−1)(−)(v+w)(z−1)[[v, w], z]

= (−)vw+wz+w(−)vz[[v, w], z] ,

(−)(z+1)(w+1)Q2(Q2(v ∨ z) ∨ w) = (−)(z+1)(w+1)(−)vw+vz+wz(−)z[[v, z], w]

= (−)vw+wz+w(−)zw[[z, v], w] ,

(−)(v+1)(w+z)Q2(Q2(w ∨ z) ∨ v) = (−)(v+1)(w+z)(−)vw+vz+wz(−)z[[w, z], v]

= (−)vw+wz+w(−)vw[[w, z], v] ,

which yields (6) after adding and dividing out the common factor, i.e.

(−)vz[[v, w], z] + (−)zw[[z, v], w] + (−)vw[[w, z], v] = 0 . (22)
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In terms of two DGLAs the compatibility condition for the L∞ morphism
is given by an infinite series of equations:

d ◦ U1(v) = U1 ◦ d(v) ,

dU2(v ∧ w)− U2(dv ∧ w)− (−)vU2(v ∧ dw) =

= U1([v, w])− [U1(v), U1(w)] ,

...

(23)

4. The Maurer-Cartan map on L∞-algebras

Consider an L∞-algebra (g, Q). When we extend the differential ~-linear
(g[[~]], Q) turns into an L∞-algebra, too. We define the generalized Maurer-
Cartan map by

MC : ~g(1)[[~]]→ ~g[[~]]

MC(~x) = projg[[~]] ◦Q ◦ exp(~x)
(24)

where we defined Q0 = 0 and exp : ~g(1)[[~]] → S(g[1])[[~]]) in the obvious

way. We have Q(

k times︷ ︸︸ ︷
x ∨ · · · ∨ x) =

∑k
j=1

(
k
j

)
Qj(x

j)xk−j because |x| = 0 in g[1]

which yields

MC(~x) = projg[[~]]

(∑
k

~k

k!

k∑
j=1

(
k

j

)
Qj(x

j)xk−j
)

= projg[[~]]

(∑
r

~r

r!
xr
∑
s

~s

s!
Qs(x

s)
)

=
∑
s

~s

s!
Qs(v

s) .

(25)

The first terms in this series are given by ~Q1(x) + ~2

2 Q2(x, x) + o(~3). In
the case of a DGLA with Q1 = −d, Q2 = [·, ·] and Q≥3 = 0 we recover – for

~ = 1 – the usual Maurer-Cartan map evaluated on −x ∈ g(1).

We denote the zero set of the Maurer-Cartan map (modulo an action of a
gauge group) by MC(g). It is invariant under L∞-morphisms and a quasi-
isomorphism U provides a bijection, given by

MC(g) 3 ~v 7→
∑
m

~m

m!
Um(xm) = ~ṽ ∈MC(h) . (26)
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We have

U(exp(~x)) = U(
∑ ~n

n!
(xn)) =

∑
n

~n

n!
U(xn)

=
∑
n

~n

n!

∑
r≥1

1

r!

∑
k1+···+kr=n

n!

k1! · · · kr!
Uk1(vk1) ∨ · · · ∨ Ukr(vkr)

=
∑
r

1

r!

∑
k1

~k1

k1!
Uk1(vk1) · · ·

∑
kr

~kr
kr!

Ukr(v
kr)

=
∑
r

1

r!
(
∑
m

~m

m!
Um(vm)

)r
= exp(~ṽ) .

This element is in MC(h), because

Q(exp(~ṽ) = Q ◦ U(exp(~x)) = U ◦Q(exp(~x)) = 0 . (27)

5. Kontsevitch’s formality

We consider the following two DGLAs.

• The DGLA of poly-vector fields on the manifold M :

(Tpoly, [·, ·]S, d = 0) with Tpoly(M) = X(M)[1] and

mathfrakX(M)(k) = Γ(ΛkTM) and [·, ·]S is the Schouten bracket which
extends the Lie bracket on vector fields to all poly-vector fields.

A Poisson structure on M is given by a bi-vector field π ∈ T
(1)
poly(M) obey-

ing [π, π] = 0. We have Q(exp(~π)) = ~2

2 [π, π] for ~π ∈ ~T(1)
poly(M) ⊂

~T(1)
poly(M)[[~]]. This allows the following identification{

Poisson structures on M
}
⊂MC(Tpoly(M)) (28)

• The DGLA of poly-differential operators on M :

(Dpoly(M), [·, ·]G, dH) with Φ ∈ D
(k)
poly(M) ⊂ Hom(C∞(M)⊗(k+1), C∞(M)),

if Φ is a derivation in every entry. The bracket is the Gerstenhaber bracket
defined by

[Φ(k),Ψ(l)]G(a1, . . . , ak+l−1) =

=

k∑
j=1

(−)(j−1)(l−1)Φ(a1, . . . , aj−1,Ψ(aj , . . . , aj+l−1), aj+l, . . . , ak+l−1)

−
l∑

j=1

(−)(l+j)(k−1)Ψ(a1, . . . , aj−1,Φ(aj , . . . , aj+k−1), aj+k, . . . , ak+l−1)
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(here the degrees are taken in the Hochschild complex). The differential is
the one of the Hochschild complex, i.e.

dHΦ(f1 ⊗ · · · ⊗ fk+1) = f1Φ(f2 ⊗ · · · ⊗ fk+1)+

+
k∑
i=1

(−)iΦ(f1 ⊗ · · · ⊗ fifi+1 ⊗ · · · ⊗ fk+1) + (−)k+1Φ(f1 ⊗ · · · ⊗ fk)fk+1.

The Maurer-Cartan set for the poly-differential operators is given by the
∗-products on M , i.e.{

∗ -products on M
}

= MC(Dpoly(M)) (29)

The Hochschild-Kostant-Rosenberg Theorem says that the natural map

Û1 : Tpoly(M)→ Dpoly(M) , (30)

that is given by2

Û1(h)(1) = h

for k = −1 and

Û1(v1 ∧ · · · ∧ vk+1)(f1 ⊗ · · · ⊗ fk+1) =
1

(k + 1)!

∑
σ∈Sk+1

(−)σ
k+1∏
j=1

vσ(j)(fj)

for k ≥ 0, is a quasi-isomorphism of complexes. This map fails to be compat-
ible with the brackets on the two DGLAs. This will be repaired by turning
to the L∞-structures and the construction of an L∞-morphism U with first

Taylor coefficient U1 = Û1. Then U is an quasi isomorphism. We have the
following theorem for the special case M = RD

Theorem 5.1 (Kontsevitch’s formality theorem). The L∞-algebra obtained
from the DGLA (Dpoly(RD), [·, ·], d) of poly-differential operators on RD is
formal.

Corollary 5.2. Every Poisson structure on RD is quantizable.

From now on we restrict ourselves to this special case!

6. Admissible graphs and associated maps

We consider graphs as finite subsets of C consisting of vertices, which are
points in {Imz ≥ 0}, and edges, i.e. lines connecting two vertices. We dis-
tinguish two kinds of vertices and we label them by non-bared and bared

2 In local coordinates and with v = 1
(k+1)!

vi1...ik+1∂i1 ∧ · · · ∧ ∂ik+1 the action of Û1 is

given in the usual way, namely Û1(v)(f1⊗· · ·⊗ fk+1) = 1
(k+1)!

vi1...ik+1∂i1f1 · · · ∂ik+1fk+1.
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integers. The edges are only allowed to start at one kind of vertex. Further-
more they are not allowed to end at the same vertex from which they start.
We list these restrictions and further definitions related with graphs

(A) Vertices:

v ∈ V := V1 ∪̇ V2 =
{

1, . . . , n
}
∪̇
{

1̄, . . . , m̄
}
,

n,m ∈ Z. We call non-bared elements vertices of first kind and
bared ones vertices of second kind.

(B) Edges:

e ∈ E :=
{

1, . . . , n
}
×
({

1, . . . , n
}
∪̇
{

1̄, . . . , m̄
})
\
{

(v, v); v ∈ V1

}
⊂ V × V

(C) For a graph Γ we denote its set of vertices and edges by V(Γ) and
E(Γ), respectively.

(D) For all numbers j ∈ N we define the set Start(Γ, j) as the set of
edges starting at the vertex labeled by j and the integer start(Γ, j)
as the amount of such edges, i.e.

Start(Γ, j) :=
{
e ∈ E(Γ); e1 = j}, start(Γ, j) := #Start(Γ, j) . (31)

We emphasize the relation #E(Γ) =
∑

i∈N start(Γ, i).

(E) We denote the set of graphs Γ with n vertices of first kind, m vertices
of second kind, and 2n+m− 2− ` edges by G`n,m̄, i.e.

G`n,m̄ :=
{

Γ ; #V(Γ)1 = n,#V(Γ)2 = m,#E(Γ) = 2n+m− 2− `
}
. (32)

To each graph γ ∈ G`n,m̄ we associate a map UΓ from ⊗nTpoly to Dpoly[1−n]
such that exactly one graded component survives.

Namely, in the source UΓ acts non-trivially on

(⊗nTpoly)(k1+···+kn)

with ki := start(i)− 1, and has image in

D
(m−1)
poly = Dpoly[1− n](n+m−2).

The degree of the map UΓ then is

|UΓ| = (n+m− 2)−
∑n

i=1 ki = (n+m− 2)−
∑n

i=1(start(i)− 1)

= 2n+m− 2 + #E(Γ) = 2n+m− 2 + (2n+m− 2− `) = ` (33)

Remark 6.1. The graph Γ may give a contribution to a Taylor coefficient
of an L∞-morphism U : Tpoly → Dpoly only if Γ ∈ G0

n,m̄, i.e. Γ has exactly
2n+m− 2 edges for some m,n ∈ N.
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Let Γ ∈ G0
n,m̄ be a graph. For v1 ⊗ · · · vn ∈ T

(k1)
poly ⊗ · · · ⊗ T

(kn)
poly with ki =

start(Γ, i)− 1 and f1 ⊗ · · · ⊗ fm ∈ ⊗mC∞ we are going to define

UΓ(v1 ⊗ · · · ⊗ vn)(f1 ⊗ · · · ⊗ fm) . (34)

In particular, the values start(i) determine the degrees of the poly-vector
fields vi for which the value is non-zero with respect to the grading of X(M).

Consider a map I : E(Γ) → {1, . . . , D} and associate to each vertex of Γ a
function, namely

V2(Γ) 3 j̄ 7−→ ψIj̄ := fj

V1(Γ) 3 i 7−→ ψIi :=
〈
ṽi , dx

I(i,1) ⊗ · · · ⊗ dxI(i,start(i))
〉 (35)

where we identify poly-vector fields and skew-symmetric tensor fields in the
usual way

T
(k)
poly 3 vi = x1 ∧ · · · ∧ xk+1

←→ ṽi =
∑

σ∈Sk+1

(−)σxσ(1) ⊗ · · · ⊗ xσ(k+1) ∈
(
X(1)

)⊗(k+1)
. (36)

In the next step we replace the function associated to each vertex by its
partial derivatives in the following way

V(Γ) 3 v 7−→
( ∏
E(Γ)3e=(· ,v)

∂I(e)

)
ψIv . (37)

The value (34) is the defined as the sum over all maps I and the product
over all vertices, i.e.

UΓ(v1⊗· · ·⊗vn)(f1⊗· · ·⊗fm) =
∑

I:E(Γ)→{1,...,D}

∏
v∈V(Γ)

( ∏
E(Γ)3e=(· ,v)

∂I(e)

)
ψIv .

(38)

Remark 6.2. (1) The enumeration of the set

Start(i) =
{

(i, 1), . . . , (i, start(i))
}

determines the sign of the value (38).
(2) If we permute the vertices in Γ by a permutation σ and call the

resulting graph Γσ we have

UΓσ(vσ(1) ⊗ · · · ⊗ vσ(n)) = UΓ(v1 ⊗ · · · ⊗ vn)

As mentioned in Remark 6.1 the collection of maps associated to the admis-
sible graphs such that their degree is zero will be the starting point for the
definition of the L∞-morphism.
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7. Configuration spaces and weights associated to graphs

The configuration spaces are given by

Confn :=
{

(z1, . . . , zn) ∈ Cn; zi 6= zj
}

and

Confn,m

:=
{

(z1, . . . , zn, α1, . . . , αm) ∈ Cn ×Rm; αi 6= αj , zi 6= zj , Im(zj) > 0
}
.

There are subgroups of the Möbius transformations act on these spaces.
Namely G3 = {z 7→ αz+ b; α ∈ R>0, b ∈ C} on Confn leaving ∞ invariant,
and G2 = {z 7→ αz + β; α, β ∈ R, α > 0} on Confn,m leaving ∞ and the
real axis invariant. The action is faithful so that the quotient spaces are
manifolds of dimension 3 and 2 less:

Cn,m := Confn,m/G
2, dimCn,m = 2n+m− 2

Cn := Confn/G
3, dimCn = 2n− 3

(39)

Consider the graph Γ ∈ G`n,m̄ embedded in the upper half plane H provided
with the hyperbolic metric. The embedding is in such a way that the edges
are geodesics, i.e. the edge connecting two vertices (=points) is part of the
circle centered on the real line connecting these two points. For two points
p, q ∈ H we define the angle via

φ(p, q) := ](e(p,∞), e(p, q)) = arg
(p− q
p− q̄

)
.

This angle map yields an 1-form dφ on C2,0. This is pulled back to Cn,m̄ via
the forgetful map pi,j : Cn,m → C2,0, pi.j([z1, . . . , zn, α1 . . . , αm]) = [zi, zj ].
The result is a collection of 1-forms dφi,j = p∗i,jdφ on Cn,m.

The angle form of a graph is now the wedge product of all the 1-forms
obtained by the pull backs via edges. We define the weight WΓ associated
to a graph Γ to be proportional to the angle form of the graph integrated
over the (compactified) configuration space C̄n,m, i.e.

WΓ =
1∏n

k=1 start(k)!

1

(2π)2n+m−2

∫
C̄n,m

∧
e∈E(Γ)

dφe (40)

Remark 7.1. The sign of the weight depends on

(1) the numbering of the set Start(Γ, i). A change of this numbering
yields the same sign as in Remark 6.2(1).

(2) the numbering of the vertices. After interchanging vertex i and j,
the sign is determined by the values of start, namely

(−)
start(i)start(j)+

j−1∑
p=i+1

(start(i)+start(j))start(p)

.
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More general, if we permute the vertices by σ we get

WΓσ = ε(σ,Γ)WΓ

where ε(σ,Γ) is the sign we get after reordering graded elements of
degree start(1), . . . , start(n) which have been shuffled by σ. We may
say that this sign does only depends on the local structure of the
graph around the vertices with non-vanishing imaginary part.

8. The L∞-morphism

We are now in the position to write down the candidate for the L∞-morphism
U . As written above it is enough to give the Taylor coefficients. We define

Un :=
∑
m≥0

∑
Γ∈G0

n,m̄

WΓUΓ . (41)

Remark 8.1. (1) The sum is finite, because
• if we insert a poly-vector field in Un the, in the second sum

many summand vanish This is due to the fact that the amount
and degree of the poly vectors have to match with the amount
of vertices and edges of the graph. More precisely, the amount
of edges starting from one vertex have to match with the degree
of the corresponding entry. I.e. only the graphs with admissible
local structure enter into the sum.
• if we evaluate the multi-differential operator on an `-fold tensor

product of functions, only the summand with m = ` enters into
the first sum.

(2) The value (41) is independent of the numbering of the sets Start(Γ, i),
because of Remark 6.2(1) and 7.1(1).

The map Un is graded symmetric with respect to the grading in Tpoly[1],
because for a permutation σ we have

Un(vσ(1) ⊗ · · · ⊗ vσ(n)) =
∑
m≥0

∑
Γ∈G0

n,m̄

WΓUΓ(vσ(1) ⊗ · · · ⊗ vσ(n))

(Remark 6.2(2))
=
∑
m≥0

∑
Γ∈G0

n,m̄

WΓUΓσ(v1 ⊗ · · · ⊗ vn)

(Remark 7.1(2))
=
∑
m≥0

∑
Γ∈G0

n,m̄

ε(σ,Γ)WΓσUΓτ (v1 ⊗ · · · ⊗ vn)

= ε(σ,Γ)
∑
m≥0

∑
Γ∈G0

n,m̄

WΓUΓ(v1 ⊗ · · · ⊗ vn)

= ε(vσ(1), . . . , vσ(n))Un(v1 ⊗ · · · ⊗ vn)
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The sign ε(σ,Γ) is constant for all Γ which match with the entries in Un,
because of Remark 7.1(2). In the last line the degrees of the entries have
to be taken in Tpoly[1]. There we have |vi| = start(i)− 2 such that the last
equality holds.

Example 8.2. The set G0
1,m̄ consists of one single graph Γm given by

V(Γm) = {1, 1̄, . . . , m̄} and E(Γm) = {(1, 1̄), . . . , (1, m̄)}. The weight as-
sociated to this graph is WΓm = 1

m! . With these ingredients we are able to

state the action of U1 on an element v = 1
k!v

i1...ik∂σ(i1)∧ · · · ∧∂σ(ik) ∈ T
(k−1)
poly

evaluated on k functions fi, c.f.(41).

U1(v)(f1, . . . , fk) =
∑
m≥0

∑
Γ∈G0

1,m̄

WΓUΓ(v)(f1, . . . , fk)

=
1

k!
UΓk(v)(f1, . . . , fk)

=
1

k!

∑
I:{1̄,...,k̄}→{1,...,D}

vI(1̄)...I(k̄)
k̄∏
ī=1̄

∂I (̄i)fī

=
1

k!
vi1...ik∂i1f1 · · · ∂ikfk .

Here we used

ψI1 =
〈
ṽ , dxI(1̄) ⊗ · · · ⊗ dxI(k̄)

〉
=

1

k!

∑
σ∈Sk

vσ(i1)...σ(ik)
〈
∂σ(i1) ⊗ · · · ⊗ ∂σ(ik), dx

I(1̄) ⊗ · · · ⊗ dxI(k̄)
〉

=
1

k!

∑
σ∈Sk

vσ(i1)...σ(ik)δ
I(1̄)
σ(i1) · · · δ

I(k̄)
σ(ik)

=
1

k!

∑
σ∈Sk

vI(1̄)...I(k̄)

= vI(1̄)...I(k̄)

with

ṽ =
1

k!
vi1...ik

∑
σ∈Sk

(−)σ∂σ(i1) ⊗ · · · ⊗ ∂σ(ik)

=
1

k!

∑
σ∈Sk

vσ(i1)...σ(ik)∂σ(i1) ⊗ · · · ⊗ ∂σ(ik) .

9. Poisson structures and ∗-products

In Section 5 we gave the two Maurer-Cartan sets for the poly-vector fields
and poly-differential operators. An L∞-morphism yields a one to one corre-
spondence between these sets, given by (26).
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In terms of the maps constructed in the proceeding section, we can associate
to every Poisson structure π a ∗-product. In the formula we add the 0th order
term given by the multiplication.

f ? g − fg :=
∑
n

~n

n!
Un(πn)(f ⊗ g) =

∑
n

~n

n!

∑
Γ∈G0

n,2̄

WΓUΓ(f ⊗ g) . (42)

In particular, the first order terms are

f ? g = fg + ~{f, g}+ o(~2) (43)

where the bracket is the Poisson bracket induced by π, i.e{
f, g
}

=
1

2
πij∂if∂jg .

References

[1] Enrico Arbarello. Introduction to Kontsevich’s result on deformation quantization of
Poisson structures. In Algebraic geometry seminars. 1998–1999. Papers from the sem-
inars held at the Scuola Normale Superiore, Pisa, 1998–1999. (Seminari di geometria
algebrica. 1998–1999), page 287 p. Pisa: Scuola Normale Superiore., 1999.

[2] D. Arnal, D. Manchon, and M. Masmoudi. Choix des signes pour la formalité de M.
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