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1 Mengenlehre
1.1 Grundbegriffe der Mengenlehre
Eine Menge 𝑀 ist eine Zusammenfassung von Objekten. Diese Objekte
heißen Elemente der Menge.
Bezeichnungen:

∅ Die leere Menge ∅ ist die Menge, welche kein Element
enthält.

𝑎 ∈ 𝑀 Das Element 𝑎 ist in der Menge 𝑀 enthalten.

𝑎 ∉ 𝑀 Das Element 𝑎 ist nicht in der Menge 𝑀 enthalten.

#𝑀 Die Anzahl der Elemente in der Menge 𝑀 .

𝑀 ⊂ 𝑁 𝑀 ist Teilmenge von 𝑁:

𝑀 ⊂ 𝑁 , wenn jedes Element
aus 𝑀 auch Element aus 𝑁
ist.

1.2 Mengenoperationen

Die Schnittmenge 𝑀 ∩ 𝑁 besteht aus allen
Elementen, die sowohl in 𝑀 und in 𝑁 enthalten
sind:

𝑎 ∈ 𝑀 ∩ 𝑁 , wenn 𝑎 ∈ 𝑀 und 𝑎 ∈ 𝑁

Die Vereinigungsmenge𝑀∪𝑁 besteht aus allen
Elementen, die in einer der Mengen 𝑀 oder 𝑁
enthalten sind:

𝑎 ∈ 𝑀 ∪ 𝑁 , wenn 𝑎 ∈ 𝑀 oder 𝑎 ∈ 𝑁
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Die Differenzmenge 𝑀 \ 𝑁 besteht aus allen
Elementen, die in 𝑀 enthalten sind, aber nicht
in 𝑁:

𝑎 ∈ 𝑀 \ 𝑁 , wenn 𝑎 ∈ 𝑀 und 𝑎 ∉ 𝑁

Die symmetrische Differenzmenge 𝑀△𝑁 be-
steht aus allen Elementen, die in einer der beiden
Mengen 𝑀 oder 𝑁 enthalten sind, aber nicht in
beiden gleichzeitig:

𝑎 ∈ 𝑀 △ 𝑁 , wenn 𝑎 ∈ 𝑀 ∪ 𝑁 und 𝑎 ∉ 𝑀 ∩ 𝑁

Wenn 𝑀 selbst Teilmenge einer größeren Menge
ist, dann kann man die Komplementmenge 𝑀∁

(oder 𝑀̄) bilden. Sie besteht aus allen Elementen,
die nicht in 𝑀 liegen:

𝑎 ∈ 𝑀∁, wenn 𝑎 ∉ 𝑀

Grundlegende Eigenschaften:

• Für alle Mengen 𝑀 gilt ∅ ⊂ 𝑀 und 𝑀 ⊂ 𝑀 .

• 𝑀 = 𝑁 gilt genau dann, wenn 𝑀 ⊂ 𝑁 und 𝑁 ⊂ 𝑀 .

• 𝑀 ∩ ∅ = ∅, 𝑀 ∪ ∅ = 𝑀

• 𝑀 ∩ (𝑁 ∪ 𝑅) = (𝑀 ∩ 𝑁) ∪ (𝑀 ∩ 𝑅)
• 𝑀 ∪ (𝑁 ∩ 𝑅) = (𝑀 ∪ 𝑁) ∩ (𝑀 ∩ 𝑅)
• 𝑀 \ (𝑁 ∩ 𝑅) = (𝑀 \ 𝑁) ∪ (𝑀 \ 𝑅)
• Ist 𝑀 ∩ 𝑁 = ∅, dann ist 𝑀 \ 𝑁 = 𝑀 und 𝑁 \ 𝑀 = 𝑁 .

• 𝑀 △ 𝑁 =
(
𝑀 \ 𝑁

)
∪

(
𝑁 \ 𝑀

)
=

(
𝑀 ∪ 𝑁

)
\
(
𝑁 ∩ 𝑀

)
• 𝑀 \ 𝑁 = 𝑀 ∩ 𝑁∁
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• 𝑀 ∪ 𝑁 = (𝑀 ∩ 𝑁) ∪ (𝑀 ∩ 𝑁∁) ∪ (𝑀∁ ∩ 𝑁)

Die Potenzmenge P(𝑀) einer Menge 𝑀 besteht aus allen Teilmengen der
Menge 𝑀:

P(𝑀) = {𝑁 | 𝑁 ⊂ 𝑀}

Die Elemente der Potenzmenge P(𝑀) sind selbst Mengen.

Eigenschaften:

• ∅, 𝑀 ∈ P(𝑀)
• P(∅) = {∅}
• Sind 𝑁, 𝑅 ∈ P(𝑀), dann sind auch 𝑁 ∩ 𝑅, 𝑁 ∪ 𝑅, 𝑁 \ 𝑅 ∈ P(𝑀).
• Ist #𝑀 = 𝑛, dann ist #P(𝑀) = 2𝑛.

1.3 Die Zahlenbereiche

Natürliche ZahlenN 0, 1, 2, 3, 4, . . . , 1001, . . .

Ganze Zahlen Z . . . ,−550, . . . ,−2,−1, 0, 1, 2, 3, . . . , 1200, . . .

Rationale ZahlenQ Brüche; abbrechende und periodische Dezimalzahlen

Reelle ZahlenR Alle Zahlen der Zahlengerade; alle Dezimalzahlen

Hinzu kommen die komplexen Zahlen C , siehe Abschnitt 13.
Es giltN ⊂ Z ⊂ Q ⊂ R ⊂ C.
Wichtige Mengen im Umgang mit Funktionen sind die Teilmengen der reellen
Zahlen. Darunter haben die Intervalle eine herausragende Bedeutung.
Man unterscheidet abgeschlossene, offene und halboffene Intervalle, je nach-
dem ob beide Randpunkte, kein Randpunkt oder ein Randpunkt zum Intervall
gehören.
Dabei sind +∞ und −∞ als offene Ränder ausdrücklich zugelassen.
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Für 𝑎, 𝑏 ∈ R schreibt man:

[𝑎, 𝑏] =
{
𝑥 ∈ R

�� 𝑎 ≤ 𝑥 ≤ 𝑏
}

abgeschlossen
]𝑎, 𝑏[ =

{
𝑥 ∈ R

�� 𝑎 < 𝑥 < 𝑏} offen
]𝑎, 𝑏] =

{
𝑥 ∈ R

�� 𝑎 < 𝑥 ≤ 𝑏
}

halboffen
[𝑎, 𝑏[ =

{
𝑥 ∈ R

�� 𝑎 ≤ 𝑥 < 𝑏
}

halboffen
]−∞, 𝑏] =

{
𝑥 ∈ R

�� 𝑥 ≤ 𝑏
}

halboffen
]−∞, 𝑏[ =

{
𝑥 ∈ R

�� 𝑥 < 𝑏} offen
[𝑎, +∞[ =

{
𝑥 ∈ R

�� 𝑥 ≥ 𝑎
}

halboffen
]𝑎, +∞[ =

{
𝑥 ∈ R

�� 𝑥 > 𝑎} offen

Weitere geläufige Bezeichnungen für die letzten vier Intervalle sind

]−∞, 𝑏] = R≤𝑏, ]−∞, 𝑏[ = R<𝑏, [𝑎, +∞[ = R≥𝑎, ]𝑎, +∞[ = R>𝑎 .

Als weitere Schreibweisen nutzt manR+ = R>0 undR+
0 = R≥0.

2 Grundlegende Arithmetik, Algebra und Geometrie
2.1 Klammerrechnung
Für alle reellen Zahlen 𝑎, 𝑏, 𝑐, 𝑑 ∈ R gelten folgende Regeln im Umgang mit
Klammern:

Distributivgesetz

𝑎 · (𝑏 ± 𝑐) = 𝑎𝑏 ± 𝑎𝑐 (𝑎 + 𝑏) · (𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Binomische Formeln

(𝑎 ± 𝑏)2 = 𝑎2 ± 2𝑎𝑏 + 𝑏2 (𝑎 + 𝑏) · (𝑎 − 𝑏) = 𝑎2 − 𝑏2

2.2 Bruchrechnung

Ein Bruch ist eine Zahl der Form
𝑎

𝑏
.

Dabei sind 𝑎 ∈ Z und 𝑏 ∈ Z\{0} zwei Zahlen, die vom Bruchstrich getrennt
werden.
𝑎 heißt Zähler und 𝑏 heißt Nenner des Bruchs

𝑎

𝑏
. Der Bruch

𝑎

𝑏
entspricht der

Dezimalzahl, die man bei der Berechnung von 𝑎 : 𝑏 erhält.
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Ein Bruch entspricht immer entweder einer abbrechenden oder periodi-
schen Dezimalzahl. Umgekehrt lässt sich jede abbrechende oder periodische
Dezimalzahl als Bruch darstellen.
Alle Brüche zusammen bilden die rationalen ZahlenQ.
Für 𝑎 ∈ Z wird der Bruch

𝑎

1
mit der ganzen Zahl 𝑎 identifiziert.

Brüche ändern ihren Wert nicht, wenn man sie erweitert oder kürzt:

Erweitern:
𝑎

𝑏
=
𝑎 · 𝑐
𝑏 · 𝑐 für 𝑐 ∈ Z\{0}

Kürzen:
𝑎

𝑏
=
𝑎 : 𝑐
𝑏 : 𝑐

für 𝑐 ∈ Z\{0}, welches 𝑎 und 𝑏 teilt

Rechenregeln im Umgang mit Brüchen:

𝑎

𝑏
± 𝑐

𝑑
=
𝑎 · 𝑑 ± 𝑏 · 𝑐

𝑏 · 𝑑
𝑎

𝑏
· 𝑐
𝑑
=
𝑎 · 𝑐
𝑏 · 𝑑

𝑎

𝑏
:
𝑐

𝑑
=
𝑎

𝑏
· 𝑑
𝑐
=
𝑎 · 𝑑
𝑏 · 𝑐

Spezialfälle:

𝑎

𝑏
· 𝑐 = 𝑐 · 𝑎

𝑏
=
𝑎 · 𝑐
𝑏

für 𝑐 ∈ Z 𝑎

𝑏
: 𝑐 =

𝑎

𝑏 · 𝑐 für 𝑐 ∈ Z\{0}

Der Kehrwert eines Bruches
𝑎

𝑏
ist der Bruch

𝑏

𝑎
.

Es gilt insbesondere
𝑎

𝑏
· 𝑏
𝑎
= 1

2.3 Potenzrechnung

Potenzschreibweise: 𝑎𝑛 = 𝑎 · 𝑎 · . . . · 𝑎︸         ︷︷         ︸
𝑛-mal

𝑎𝑛 heißt Potenz. Dabei heißt 𝑎 ∈ R die Basis und 𝑛 ∈ N \ {0} der Exponent.
Die folgenden Rechenregeln heißen Potenzgesetze:

𝑎𝑚 · 𝑎𝑛 = 𝑎𝑚+𝑛 𝑎𝑛

𝑎𝑚
= 𝑎𝑛−𝑚 𝑎𝑛 · 𝑏𝑛 = (𝑎 · 𝑏)𝑛 𝑎𝑛

𝑏𝑛
=

(𝑎
𝑏

)𝑛
(
𝑎𝑚

)𝑛
= 𝑎𝑚·𝑛 𝑎0 = 1 𝑎−𝑛 =

1
𝑎𝑛

5



2.4 Anwendung: Maßvorsätze
Im Zusammenhang mit technischen und physikalischen Größen stößt man oft
auf sehr große oder sehr kleine Zahlen. Verwendetet Größenbereiche sind da
z. B.

0,000000013 𝐹 (elektrische Kapazität)
12500000Ω (elektrischer Widerstand)
8500000000𝑊 (Leistung deutscher Offshore-Windparks, 2023)
0,00000000008𝑚 (typischer Atomradius)
9460000000000000𝑚 (ein Lichtjahr)

Zur besseren Handhabbarkeit und Vergleichbarkeit solcher Größen nutzt man
für die Zehnerpotenzen spezielle Maßvorsätze (oder Präfixe), die man den
Einheiten voranstellt. Diese Maßvorsätze sind:

Präfix 𝑄 𝑅 𝑌 𝑍 𝐸 𝑃 𝑇 𝐺 𝑀 𝑘 ℎ 𝑑𝑎

Name Quetta Ronna Yotta Zetta Exa Peta Tera Giga Mega Kilo Hekto Deka

Zehnerpotenz 1030 1027 1024 1021 1018 1015 1012 109 106 103 102 101

Präfix 𝑑 𝑐 𝑚m 𝜇 𝑛 𝑝 𝑓 𝑎 𝑧 𝑦 𝑟 𝑞

Name Dezi Zenti Milli Mikro Nano Piko Fempto Atto Zepto Yokto Ronto Quekto

Zehnerpotenz 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24 10−27 10−30

Die oben genannten Beispiele werden damit zu
13 · 10−9 𝐹 = 13 𝑛𝐹 (elektrische Kapazität)
12,5 · 106 Ω = 12,5𝑀Ω (elektrischer Widerstand)
8,5 · 109𝑊 = 8,5𝐺𝑊 (Leistung deutscher Offshore-Windparks, 2023)
80 · 10−12𝑚 = 80 𝑝𝑚 (typischer Atomradius)
9,46 · 1015𝑚 = 9,46 𝑃𝑚 (ein Lichtjahr)

2.5 Wurzelrechnung

Quadratwurzel aus 𝑎 ≥ 0
√
𝑎 = 𝑐 mit 𝑐2 = 𝑎, 𝑐 ≥ 0

Dritte Wurzel aus 𝑎 ∈ R 3√𝑎 = 𝑐 mit 𝑐3 = 𝑎

𝑛-te Wurzel aus

{
𝑎 ≥ 0 (𝑛 ∈ N gerade)
𝑎 ∈ R (𝑛 ∈ N ungerade)

𝑛
√
𝑎 = 𝑐 mit

{
𝑐𝑛 = 𝑎, 𝑐 ≥ 0
𝑐𝑛 = 𝑎
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Verbindung zwischen Wurzeln und Potenzen:

𝑛
√
𝑎 = 𝑎

1
𝑛

Die Rechenregeln für Wurzeln oder Wurzelgesetze:

𝑛
√
𝑎 · 𝑛

√
𝑏 =

𝑛
√
𝑎 · 𝑏

𝑛
√
𝑎

𝑛
√
𝑏
= 𝑛

√︂
𝑎

𝑏

𝑚
√︁

𝑛
√
𝑎 = 𝑛·𝑚√𝑎 𝑛

√
𝑎𝑚 =

(
𝑛
√
𝑎
)𝑚

2.6 Logarithmusrechnung

log𝑎 (𝑏) ist diejenige Zahl 𝑥, für die 𝑎𝑥 = 𝑏 ist

Man spricht log𝑎 (𝑏) als Logarithmus von 𝑏 zur Basis 𝑎.
Es gilt:

log𝑎 (𝑎𝑛) = 𝑛 log𝑎 (1) = 0 log𝑎 (𝑎) = 1

Logarithmengesetze:
Logarithmen zur gleichen Basis:

log𝑎 (𝑏 · 𝑐) = log𝑎 (𝑏) + log𝑎 (𝑐) log𝑎 (𝑏 : 𝑐) = log𝑎 (𝑏) − log𝑎 (𝑐)

log𝑎 (𝑏𝑛) = 𝑛 · log𝑎 (𝑏)

Logarithmen zu unterschiedlichen Basen:

log𝑏 (𝑐) =
log𝑎 (𝑐)
log𝑎 (𝑏)

Bezeichnungen für Logarithmen zu speziellen Basen:

Dekadischer
Logarithmus

Dualer
Logarithmus

Natürlicher
Logarithmus

lg(𝑏) = log10(𝑏) ld(𝑏) = log2(𝑏) ln(𝑏) = log𝑒 (𝑏)

Hier bezeichnet 𝑒 = 2,718281828459 . . . die Eulersche Zahl.

2.7 Lösungen linearer Gleichungen
Bei einer linearen Gleichung 𝑎𝑥 + 𝑏 = 0 muss stets 𝑎 ≠ 0 sein.

Es gibt genau eine Lösung 𝑥 = −𝑏
𝑎
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2.8 Lösungen quadratischer Gleichungen

Bei einer quadratischen Gleichung 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 muss stets 𝑎 ≠ 0 sein.
Alle Lösungen der quadratischen Gleichungen berechnet man mit

𝑝 =
𝑏

𝑎
, 𝑞 =

𝑐

𝑎

Es können folgende Fälle auftreten:

𝑝2 > 4𝑞 genau zwei Lösungen 𝑥± = − 𝑝
2
±

√︂( 𝑝
2

)2
− 𝑞 ( 𝒑𝒒-Formel)

𝑝2 = 4𝑞 genau eine Lösung 𝑥 = − 𝑝
2

𝑝2 < 4𝑞 keine Lösung

2.9 Prozentrechnung

𝐺: Grundwert

𝑝: Prozentsatz in %

𝑊 : Prozentwert

Basisformel: 𝑊 = 𝐺 · 𝑝

100

Abgleitete Formeln: 𝐺 = 100 · 𝑊
𝑝

und 𝑝 = 100 · 𝑊
𝐺

2.10 Kongruenz, Ähnlichkeit und die Strahlensätze

Zwei Dreiecke heißen kongruent, wenn die Seitenlängen des einen mit den
Seitenlängen des anderen übereinstimmen.

Zwei Dreiecke sind genau dann kongruent, wenn Sie durch Verschiebung,
Drehung und/oder Achsenspiegelung auseinander hervorgehen.

Zwei Dreiecke heißen ähnlich, wenn die Winkel des einen mit den Winkeln
des anderen übereinstimmen.

Zwei Dreiecke sind genau dann ähnlich, wenn Sie durch Verschiebung,
Drehung, Achsenspiegelung und/oder zentrischer Streckung auseinander
hervorgehen.

Zwei kongruente Dreiecke sind ähnlich.
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Aus der Ähnlichkeit von Dreiecken folgen die Strahlensätze:

Werden zwei Strahlen von parallelen Geraden gekreuzt, dann gelten folgende
Verhältnisgleichungen, die Strahlensätze heißen:

𝑍𝐴

𝑍𝐴′
=

𝑍𝐵

𝑍𝐵′
𝑍𝐴

𝑍𝐴′
=

𝐴𝐵

𝐴′𝐵′

2.11 Die Satzgruppe des Pythagoras
Die Satzgruppe des Pythagoras be-
schreibt in rechtwinkligen Dreiecken
Beziehungen zwischen

• den Katheten,
• der Hypotenuse,
• den Hypotenusenabschnitten und
• der Höhe.

Bezeichnungen:

Der Satz des Pythagoras:
Die Summe der Quadrate über den Ka-
theten entspricht dem Quadrat über der
Hypotenuse:

𝑎2 + 𝑏2 = 𝑐2
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Der Kathetensatz:
Das Quadrat über einer Kathete ent-
spricht dem Rechteck aus zugehöri-
gem Hypotenusenabschnitt und Hy-
potenuse:

𝑎2 = 𝑐 · 𝑝 𝑏2 = 𝑐 · 𝑞

Der Höhensatz:
Das Quadrat über der Höhe entspricht
dem Rechteck aus den zwei Hypote-
nusenabschnitten:

ℎ2 = 𝑝 · 𝑞

2.12 Der Satz des Thales und der Umfangswinkelsatz
Der Umfangswinkelsatz:

Alle Dreiecke über der Sehne 𝑠 eines
Kreises haben den selben Umfangswin-
kel 𝜑 oder 𝜓 = 180◦ − 𝜑, je nachdem,
ob der Mittelpunkt des Kreises innerhalb
oder außerhalb des Dreiecks liegt, das
aus Sehne und Umfangspunkt gebildet
wird.
Die Sehnen-Tangentenwinkel ist genau-
so groß wie der Umfangswinkel.
Der Mittelpunktswinkel ist doppelt so
groß wie der Umfangswinkel.
Der Satz des Thales ist der wichtige Spezialfall des Umfangswinkelsatzes zu
den Winkeln 𝜑 = 𝜓 = 90◦:
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Satz des Thales:

Alle Dreiecke, die den Durchmesser eines
Kreises als Hypotenuse besitzen und de-
ren dritter Punkt auf dem Kreis liegt, sind
rechtwinklig.
Umgekehrt liegen die Ecken eines recht-
winkligen Dreiecks auf einem Kreis, dessen
Mittelpunkt in der Mitte der Hypotenuse
liegt.

3 Lineare Gleichungssysteme
3.1 Lineare Gleichungssysteme
Ein lineares Gleichungssystem (LGS) hat folgende allgemeine Form:

𝑎1,1 · 𝑥1 + 𝑎1,2 · 𝑥2 + . . . + 𝑎1,𝑛 · 𝑥𝑛 = 𝑏1

𝑎2,1 · 𝑥1 + 𝑎2,2 · 𝑥2 + . . . + 𝑎2,𝑛 · 𝑥𝑛 = 𝑏2
...

𝑎𝑚,1 · 𝑥1 + 𝑎𝑚,2 · 𝑥2 + . . . + 𝑎𝑚,𝑛 · 𝑥𝑛 = 𝑏𝑚

Im Fall von 𝑚 Gleichungen und 𝑛 Variablen 𝑥1, 𝑥2, . . . , 𝑥𝑛 spricht man von
einem 𝑚 × 𝑛-LGS
Die 𝑎𝑖, 𝑗 heißen Koeffizienten und die 𝑏𝑖 rechte Seite des LGS.
Im Fall 𝑚 = 𝑛 spricht man von einem quadratischen LGS der Größe 𝑛 × 𝑛.
Eine Lösung eines 𝑚 × 𝑛-LGS ist ein 𝑛-Tupel von Zahlen, für das alle 𝑚
Gleichungen erfüllt sind, wenn man die Variablen durch diese Zahlen ersetzt.

3.2 Dreieckform und Rückwärts-Einsetzen
Ein quadratisches LGS liegt in spezieller Dreieckform vor, wenn es die
folgende Gestalt hat

𝑎1,1 · 𝑥1 + 𝑎1,2 · 𝑥2 + . . . + 𝑎1,𝑛−1𝑥𝑛−1 + 𝑎1,𝑛𝑥𝑛 = 𝑏1

𝑎2,2 · 𝑥2 + . . . + 𝑎2,𝑛−1𝑥𝑛−1 + 𝑎2,𝑛𝑥𝑛 = 𝑏2
...

𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1

𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛

wobei alle Diagonalkoeffizienten 𝑎1,1, 𝑎2,2, . . . , 𝑎𝑛,𝑛 ≠ 0
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Lässt sich ein quadratisches LGS in spezielle △-Form überführen, dann
hat das LGS genau eine Lösung.

Diese Lösung erhält man in 𝑛 Schritten durch Rückwärts-Einsetzen:

1. Schritt: Man bestimmt aus der letzten Gleichung die Lösung für 𝑥𝑛
2. Schritt: Man bestimmt aus der zweitletzten Gleichung mit 𝑥𝑛 die

Lösung für 𝑥𝑛−1
3. Schritt: Man bestimmt aus der drittletzten Gleichung mit 𝑥𝑛, 𝑥𝑛−1

die Lösung für 𝑥𝑛−2
...

𝑛−1. Schritt: Man bestimmt aus der zweiten Gleichung mit 𝑥3, . . . , 𝑥𝑛 die
Lösung für 𝑥2

𝑛. Schritt: Man bestimmt aus der ersten Gleichung mit 𝑥2, . . . , 𝑥𝑛 die
Lösung für 𝑥1

3.3 Der Gauß-Algorithmus
Folgende drei elementare Umformungen (Gaußschritte) ändern die Lösungen
eines LGS nicht:

Typ 1: Zeilentausch

Typ 2: Multiplikation einer Gleichung mit einer Zahl ungleich Null oder
Division einer Gleichung durch eine Zahl ungleich Null

Typ 3: Addieren einer Gleichung zu einer anderen oder Subtraktion einer
Gleichung von einer anderen

Man die Umformungen vom Typ 2 und Typ 3 in folgender Form gleichzeitig
anzuwenden:

Typ 4: Addieren des Vielfachen einer Gleichung zu einer anderen oder
Subtraktion des Vielfachen einer Gleichung von einer anderen

Mit Hilfe der Umformungen vom Typ 1 bis Typ 4 lässt sich ein LGS vereinfa-
chen und gegebenenfalls in die spezielle △-Form überführen.
Man spricht vom Gauß-Algorithmus oder einfach vom Additionsverfahren)
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3.4 Lösungsstruktur kleiner quadratischer LGS

3.4.1 Lösungsstruktur von 2 × 2-LGS

Fall 1
2𝑥 − 5𝑦 = 3

3𝑦 =−19
spezielle △-Form
genau eine Lösung
(durch rückwärts

Einsetzen)

Fall 2
𝑥 − 3𝑦 =−1

0=−1
’allgemeine’ △-Form

keine Lösung
(letzte Gleichung nicht

lösbar)

Fall 3
3𝑥 + 𝑦 = 3

0= 0
’allgemeine’ △-Form

unendlich viele
Lösungen

3.4.2 Lösungsstruktur von 3 × 3-LGS

Fall 1
−3𝑥 − 8𝑦 − 3𝑧 =−3

− 3𝑦 − 6𝑧 = 6
3𝑧 =−3

spezielle △-Form
genau eine Lösung
(durch rückwärts

Einsetzen)

Fall 2a
−3𝑥 − 8𝑦 − 3𝑧 =−3

− 5𝑦 + 12𝑧 =−12
0= 2

’allgemeine’ △-Form
keine Lösung

(letzte Gleichung nicht
lösbar)

Fall 2b
−3𝑥 − 8𝑦 − 3𝑧 =−3

0= 0
0=−1

’allgemeine’ △-Form
keine Lösung

(letzte Gleichung nicht
lösbar)

Fall 3a
−3𝑥 − 8𝑦 − 3𝑧 =−3

− 5𝑦 + 12𝑧 =−12
0= 0

’allgemeine’ △-Form
unendlich viele

Lösungen

Fall 3b
−3𝑥 − 8𝑦 − 3𝑧 =−3

0= 0
0= 0

’allgemeine’ △-Form
unendlich viele

Lösungen

4 Folgen und Reihen
4.1 Grundbegriffe zu Folgen und Reihen
Eine Zahlenfolge oder kurz Folge ist eine geordnete unendliche Menge von
Zahlen (𝑎0, 𝑎1, 𝑎2, . . .).
Man schreibt für eine Folge abkürzend (𝑎𝑛), also (𝑎𝑛) = (𝑎0, 𝑎1, 𝑎2, . . .).
Die Zahlen 𝑎𝑘 , 𝑘 = 0, 1, 2, . . ., heißen Folgenglieder.
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Eine Reihe ist eine spezielle Folge (𝑠𝑛) = (𝑠0, 𝑠1, 𝑠2, . . .). Ihre Folgenglieder
𝑠𝑘 sind Summen der Folgenglieder einer Folge (𝑎𝑛). Für 𝑘 = 0, 1, 2 . . . ist

𝑠𝑘 = 𝑎0 + 𝑎1 + . . . + 𝑎𝑘−1 + 𝑎𝑘 =
𝑘∑︁
𝑖=0

𝑎𝑖 ,

4.2 Arithmetische und geometrische Folgen und Reihen

explizite Definition rekursive Definition

Arithmetische Folge 𝑎𝑘 = 𝑎0 + 𝑘 · 𝑑 𝑎𝑘 = 𝑎𝑘−1 + 𝑑

Geometrische Folge 𝑎𝑘 = 𝑎0 · 𝑞𝑘 𝑎𝑘 = 𝑎𝑘−1 · 𝑞

Arithmetische Reihe 𝑠𝑘 =
𝑘 + 1

2
·
(
𝑎0 + 𝑎𝑘

)
Geometrische Reihe 𝑠𝑘 = 𝑎0 ·

1 − 𝑞𝑘+1

1 − 𝑞

4.3 Grenzwert einer konvergenten Zahlenfolge

lim
𝑛→∞

𝑎𝑛 = 𝑔 ⇐⇒
{

Für alle 𝜖 > 0 gibt es ein 𝑛𝜖 , sodass
|𝑎𝑛 − 𝑔 | < 𝜖 für alle 𝑛 > 𝑛𝜖

Man sagt: Für 𝑛 > 𝑛𝜖 liegen alle Folgenglieder 𝑎𝑛 in der 𝜖-Umgebung von 𝑔.
Besitzt (𝑎𝑛) einen Grenzwert 𝑔 = lim

𝑛→∞
𝑎𝑛, dann heißt die Folge konvergent,

andernfalls heißt sie divergent.

4.4 Grenzwert der geometrischen Reihe

Die geometrische Reihe (𝑠𝑛) mit 𝑠𝑘 = 𝑎0
𝑘∑
𝑖=0
𝑞𝑖 konvergiert nur, wenn

−1 < 𝑞 < 1 ist. Es gilt:

|𝑞 | < 1 =⇒ lim
𝑛→∞

𝑠𝑛 =
𝑎0

1 − 𝑞
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4.5 Schranken von Zahlenfolgen

𝑆𝑢 heißt untere Schranke der Zahlenfolge (𝑎𝑛) ⇐⇒ 𝑎𝑛 ≥ 𝑆𝑢 für alle 𝑛

𝑆𝑜 heißt obere Schranke der Zahlenfolge (𝑎𝑛) ⇐⇒ 𝑎𝑛 ≤ 𝑆𝑜 für alle 𝑛

Hat (𝑎𝑛) eine

{
untere Schranke
obere Schranke

}
, dann heißt (𝑎𝑛)

{
nach unten beschränkt
nach oben beschränkt

}
4.6 Monotonie von Zahlenfolgen

Die Folge (𝑎𝑛) steigt monoton ⇐⇒ 𝑎𝑛+1 ≥ 𝑎𝑛 für alle 𝑛

Die Folge (𝑎𝑛) steigt streng monoton ⇐⇒ 𝑎𝑛+1 > 𝑎𝑛 für alle 𝑛

Die Folge (𝑎𝑛) fällt monoton ⇐⇒ 𝑎𝑛+1 ≤ 𝑎𝑛 für alle 𝑛

Die Folge (𝑎𝑛) fällt streng monoton ⇐⇒ 𝑎𝑛+1 < 𝑎𝑛 für alle 𝑛

4.7 Nützliche Grenzwertsätze

Monotoniekriterium

Ist (𝑎𝑛)
{
monoton steigend
monoton fallend

}
und

{
nach oben beschränkt
nach unten beschränkt

}
, dann ist

(𝑎𝑛) konvergent.

Einschachtelungskriterium

Sind (𝑎𝑛) und (𝑏𝑛) konvergent mit gleichem Grenzwert lim
𝑛→∞

𝑎𝑛 =

lim
𝑛→∞

𝑏𝑛 = 𝑔 und gilt 𝑎𝑘 ≤ 𝑐𝑘 ≤ 𝑏𝑘 für alle Folgenglieder von (𝑐𝑛),
dann konvergiert (𝑐𝑛) ebenfalls mit Grenzwert 𝑔.

15



Kriterium für Summen und Produkte

Sind (𝑎𝑛) und (𝑏𝑛) konvergent mit lim
𝑛→∞

𝑎𝑛 = 𝑔1 und lim
𝑛→∞

𝑏𝑛 = 𝑔2,
dann konvergieren Summe und Produkt der Folgen ebenfalls mit

lim
𝑛→∞

(𝑎𝑛 ± 𝑏𝑛) = 𝑔1 ± 𝑔2 und lim
𝑛→∞

(𝑎𝑛 · 𝑏𝑛) = 𝑔1 · 𝑔2.

Gilt zusätzlich noch 𝑏𝑘 , 𝑔2 ≠ 0, dann konvergiert auch der Quotient
der Folgen mit

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
=
𝑔1
𝑔2

.

4.8 Anwendung: Zinseszins, Spar-, Renten- und Ratenpläne

4.8.1 Entwicklung eines verzinsten Grundkapitals

𝐾0 Anfangskapital

𝑝 Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

𝑘 Anzahl der Sparraten pro Zinsperiode,
typisch: 𝑘 = 1, 12 oder 365 (Jahr, Monat oder Tag)

𝑞 = 1 + 𝑝

100 · 𝑘 Zinsfaktor

𝑛 Anzahl der vollen Zinsperioden

ℓ Anzahl der zusätzlichen Verzinsungen innerhalb einer
begonnenen Zinsperiode, 0 ≤ ℓ < 𝑘

𝐾 Kapital nach (𝑛 · 𝑘 + ℓ)-maliger Verzinsung

𝐾 = 𝐾0 · 𝑞𝑛·𝑘+ℓ

4.8.2 Entwicklung eines Sparplans

𝑆0 Regelmäßige Sparzahlung
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𝑝 Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

𝑘 Anzahl der Sparzahlungen pro Zinsperiode,
typisch: 𝑘 = 1 oder 12 (Jahr oder Monat)

𝑞 = 1 + 𝑝

100 · 𝑘 Zinsfaktor

𝑛 Anzahl der vollen Zinsperioden

ℓ Anzahl der zusätzlichen Sparnzahlungen innerhalb
einer begonnenen Zinsperiode, 0 ≤ ℓ < 𝑘

𝑆 Kapital nach (𝑛 ·𝑘 + ℓ)-maliger Einzahlung

vorschüssig: 𝑆 = 𝑆0 · 𝑞 ·
𝑞𝑛·𝑘+ℓ − 1
𝑞 − 1

nachschüssig: 𝑆 = 𝑆0 ·
𝑞𝑛·𝑘+ℓ − 1
𝑞 − 1

4.8.3 Entwicklung eines Renten-/Ratenplans

𝐾0 Kapital-/Kreditbetrag zu Beginn der Verren-
tung/Ratenzahlung

𝑅 Regelmäßige Renten-/Ratenzahlung

𝑝 Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

𝑘 Anzahl der Renten-/Ratenzahlungen pro Zinsperiode
typisch: 𝑘 = 1 oder 12 (Jahr oder Monat)

𝑞 = 1 + 𝑝

100 · 𝑘 Zinsfaktor

𝑛 Anzahl der vollen Zinsperioden
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ℓ Anzahl der zusätzlichen Renten-/Ratenzahlungen in-
nerhalb einer begonnenen Zinsperiode, 0 ≤ ℓ < 𝑘

𝐾 Barwert nach (𝑛·𝑘 + ℓ)-maliger Renten-/Ratenzahlung

vorschüssig: 𝐾 = 𝐾0 · 𝑞𝑛·𝑘+ℓ − 𝑅 · 𝑞 · 𝑞
𝑛·𝑘+ℓ − 1
𝑞 − 1

nachschüssig: 𝐾 = 𝐾0 · 𝑞𝑛·𝑘+ℓ − 𝑅 · 𝑞
𝑛·𝑘+ℓ − 1
𝑞 − 1

Durch Nullsetzen dieser Formeln ergeben sich die Höhe der regelmäßigen
Renten-/Ratenzahlung oder die Laufzeit der Zahlungen:

1. Laufzeit der Renten-/Ratenzahlung bei gegebener Rentenhöhe

vorschüssig: 𝑛 · 𝑘 + ℓ =
ln(𝑞 · 𝑅) − ln

(
𝑞 · 𝑅 − (𝑞 − 1) · 𝐾0

)
ln(𝑞)

nachschüssig: 𝑛 · 𝑘 + ℓ =
ln(𝑅) − ln

(
𝑅 − (𝑞 − 1) · 𝐾0

)
ln(𝑞)

2. Höhe der regelmäßigen Renten-/Ratenzahlung bei gegebener Laufzeit

vorschüssig: 𝑅 = 𝐾0 ·
𝑞𝑛·𝑘+ℓ (𝑞 − 1)
𝑞 · (𝑞𝑛·𝑘+ℓ − 1)

nachschüssig: 𝑅 = 𝐾0 ·
𝑞𝑛·𝑘+ℓ (𝑞 − 1)
𝑞𝑛·𝑘+ℓ − 1

5 Schranken, Grenzwerte und Stetigkeit von Funktionen
5.1 Grundbegriffe zu Funktionen
Eine Funktion 𝑓 ordnet einer reellen Zahl 𝑥 eine reelle Zahl 𝑓 (𝑥) zu.
𝑓 (𝑥) heißt der Funktionswert der Funktion 𝑓 an der Stelle 𝑥.
Die Werte 𝑥 ∈ R, die man in die Funktion einsetzen kann, bilden den
Definitionsbereich von 𝑓 . Man schreibtD 𝑓 ⊂ R.
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Die Menge, in der eine Funktion ihre Werte annimmt, heißt Zielbereich.
In den hier vorliegenden Situationen ist der Zielbereich immer die Menge
R der reellen Zahlen. Man schreibt 𝑓 : D 𝑓 → R. Eine Einschränkung des
Zielbereichs auf eine echte Teilmenge vonR ist möglich.
Die Werte 𝑓 (𝑥) ∈ R, die von der Funktion tatsächlich angenommen werden,
bilden den Wertebereich (auch Bildbereich) der Funktion 𝑓 . Man schreibt
W 𝑓 ⊂ R.

𝑓 : D 𝑓 → R heißt

injektiv ⇐⇒ ( 𝑓 (𝑥) = 𝑓 (𝑦) =⇒ 𝑥 = 𝑦)
oder

(𝑥 ≠ 𝑦 =⇒ 𝑓 (𝑥) ≠ 𝑓 (𝑦))
D. h. : die Bilder der Funktion 𝑓 sind eindeutig

surjektiv ⇐⇒ Für alle 𝑦 ∈ R gibt es ein 𝑥 ∈ D 𝑓 , sodass 𝑓 (𝑥) = 𝑦.
D. h.: jeder Wert im Zielbereich wird getroffen

bĳektiv ⇐⇒ 𝑓 ist injektiv und surjektiv

monoton steigend
streng monoton steigend

monoton fallend
streng monoton fallend


⇐⇒


𝑓 (𝑥1) ≤ 𝑓 (𝑥2)
𝑓 (𝑥1) < 𝑓 (𝑥2)
𝑓 (𝑥1) ≥ 𝑓 (𝑥2)
𝑓 (𝑥1) > 𝑓 (𝑥2)

für alle 𝑥1, 𝑥2 ∈ D 𝑓 mit 𝑥1 < 𝑥2

• Schränkt man den Zielbereich einer Funktion von vornherein auf den
Wertebereich ein, dann ist eine injektive Funktion auch bĳektiv.

• Jede streng monotone Funktion ist injektiv.
Der Graph einer Funktion 𝑓 (𝑥) ist die Punktmenge{(

𝑎/ 𝑓 (𝑎)
) �� 𝑎 ∈ D 𝑓

}
Mithilfe dieser Punkte kann man den Graph in einem Koordinatensystem
skizzieren.

• Eine Funktion 𝑓 (𝑥) heißt achsensymmetrisch zur Parallelen zur 𝑦-
Achse durch 𝑥 = 𝑥0, wenn der Graph von 𝑓 (𝑥) bei einer Spiegelung an
dieser Geraden in sich über geht.
Rechnerisch lässt sich das wie folgt überprüfen:

𝑓 (𝑥0 − 𝑥) = 𝑓 (𝑥0 + 𝑥)
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• Eine Funktion 𝑓 (𝑥) heißt punktsymmetrisch zum Punkt (𝑥0/𝑦0), wenn
der Graph von 𝑓 (𝑥) bei einer Drehung um 180◦ in sich über geht.
Rechnerisch lässt sich das wie folgt überprüfen:

𝑓 (𝑥0 + 𝑥) − 𝑦0 = 𝑦0 − 𝑓 (𝑥0 − 𝑥)

Wichtige Spezialfälle:
• Eine Funktion heißt gerade, wenn sie achsensymmetrisch zur 𝑦-Achse ist,

also
𝑓 (𝑥) = 𝑓 (−𝑥)

• Eine Funktion heißt ungerade, wenn sie punktsymmetrisch zum Ursprung
(0/0) ist, also

𝑓 (𝑥) = − 𝑓 (−𝑥)

5.2 Umkehrfunktion
Wenn eine Funktion 𝑓 : D 𝑓 → W 𝑓 injektiv ist, dann gibt es zu dieser
Funktion eine Umkehrfunktion.
Für die Umkehrfunktion schreibt man

𝑓 −1 : D 𝑓 −1 →W 𝑓 −1

Dabei kehren sich Definitionsbereich und Wertbereich um, d. h.

D 𝑓 −1 =W 𝑓 und W 𝑓 −1 = D 𝑓

Eigenschaften:
• Zur Berechnung von 𝑓 −1(𝑥) kann man in manchen Fällen die Gleichung
𝑓 (𝑥) = 𝑦 nach 𝑥 auflösen und anschließend die Namen der Variablen
tauschen.

• Den Graphen der Umkehrfunktion 𝑓 −1(𝑥) erhält man, indem man den
Graphen von 𝑓 (𝑥) an der Winkelhalbierenden 𝑦 = 𝑥 spiegelt.

5.3 Schranken monotoner Funktionen

𝑆𝑜 ist obere Schranke von 𝑓

⇐⇒ 𝑓 (𝑥) ≤ 𝑆𝑜 für alle 𝑥

𝑆𝑜 ist kleinste obere Schranke von 𝑓

⇐⇒ 𝑆𝑜 ist obere Schranke und für alle 𝜖 > 0 gibt es ein 𝑥𝜖 , sodass
𝑓 (𝑥) > 𝑆𝑜 − 𝜖 für alle 𝑥 > 𝑥𝜖
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𝑆𝑢 ist untere Schranke von 𝑓

⇐⇒ 𝑓 (𝑥) ≥ 𝑆𝑢 für alle 𝑥

𝑆𝑢 ist größte untere Schranke von 𝑓

⇐⇒ 𝑆𝑢 ist untere Schranke und für alle 𝜖 > 0 gibt es ein 𝑥𝜖 , sodass
𝑓 (𝑥) < 𝑆𝑢 + 𝜖 für alle 𝑥 > 𝑥𝜖

5.4 Endliche Grenzwerte von Funktionen
Die Zahl 𝑔 heißt Grenzwert der Funktion 𝑓 an der Stelle 𝑥0 und man schreibt
lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑔, wenn eine der folgenden Bedingungen erfüllt ist (hier ist
𝑥0 = ±∞ erlaubt):

lim
𝑥→∞

𝑓 (𝑥) = 𝑔 ⇐⇒
{

für alle 𝜖 > 0 gibt es ein 𝑥𝜖 , sodass
| 𝑓 (𝑥) − 𝑔 | < 𝜖 für alle 𝑥 > 𝑥𝜖

lim
𝑥→−∞

𝑓 (𝑥) = 𝑔 ⇐⇒
{

für alle 𝜖 > 0 gibt es ein 𝑥𝜖 , sodass
| 𝑓 (𝑥) − 𝑔 | < 𝜖 für alle 𝑥 < 𝑥𝜖

lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑔 ⇐⇒
{

für alle 𝜖 > 0 gibt es ein 𝛿 > 0, sodass
| 𝑓 (𝑥) − 𝑔 | < 𝜖 für alle 𝑥0 − 𝛿 < 𝑥 < 𝑥0 + 𝛿

5.5 Stetigkeit von Funktionen

𝑓 ist stetig im Punkt
(
𝑥0/ 𝑓 (𝑥0)

)
⇐⇒ lim

𝑥→𝑥0
𝑓 (𝑥) = 𝑓 (𝑥0)
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5.6 Unendliche Grenzwerte von Funktionen
±∞ ist unendlicher Grenzwert der Funktion 𝑓 an der Stelle 𝑥0, wenn eine
der folgenden Bedingungen gilt (hier ist 𝑥0 = ±∞ erlaubt):

lim
𝑥→∞

𝑓 (𝑥) = ±∞ ⇐⇒
{

für alle 𝐶 ≷ 0 gibt es ein 𝑥𝐶 , sodass
𝑓 (𝑥) ≷ 𝐶 für alle 𝑥 > 𝑥𝐶

lim
𝑥→−∞

𝑓 (𝑥) = ±∞ ⇐⇒
{

für alle 𝐶 ≷ 0 gibt es ein 𝑥𝐶 , sodass
𝑓 (𝑥) ≷ 𝐶 für alle 𝑥 < 𝑥𝐶

lim
𝑥→𝑥0

𝑓 (𝑥) = ±∞ ⇐⇒
{

für alle 𝐶 ≷ 0 gibt es ein 𝛿 > 0, sodass
𝑓 (𝑥) ≷ 𝐶 für alle 𝑥0 − 𝛿 < 𝑥 < 𝑥0 + 𝛿

6 Ganzrationale Funktionen
6.1 Lineare Funktionen/Geraden

Eine Funktion, die sich in die Form 𝑓 (𝑥) = 𝑚𝑥 + 𝑏 umrechnen lässt, heißt
lineare Funktion.

𝑚: Steigung

𝑏: 𝑦-Achsenabschnitt

Der Graph einer linearen Funktion ist eine Gerade.
𝑚 > 0 𝑚 < 0 𝑚 = 0

Gerade steigt Gerade fällt Gerade waagerecht

Definitionsbereich D 𝑓 = R

Wertebereich W 𝑓 = R falls 𝑚 ≠ 0 undW 𝑓 = {𝑏} falls 𝑚 = 0
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Symmetrie:

• Eine lineare Funktion ist punktsymmetrisch zu jedem Punkt des Graphen.
• Eine lineare Funktion ist genau dann punktsymmetrisch zum Ursprung,

also ungerade, wenn 𝑏 = 0 ist.

Senkrechte Geraden:

Zwei Geraden 𝑓1(𝑥) = 𝑚1𝑥 + 𝑏1 und 𝑓2(𝑥) = 𝑚2𝑥 + 𝑏2 sind genau dann
senkrecht zueinander, wenn 𝑚1 · 𝑚2 = 1.

6.2 Quadratische Funktionen/Parabeln
Eine Funktion, die sich in eine der Formen aus der Tabelle umrechnen lässt,
heißt quadratische Funktion:

Normalform (NF) 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑎 ≠ 0, 𝑏, 𝑐 Zahlen

Scheitelpunktform (SPF) 𝑓 (𝑥) = 𝑎(𝑥 − 𝑥𝑆)2 + 𝑦𝑆 𝑎 ≠ 0, 𝑥𝑆, 𝑦𝑆 Zahlen

Nullstellenform (NSTF) 𝑓 (𝑥) = 𝑎(𝑥 − 𝑥1) (𝑥 − 𝑥2) 𝑎 ≠ 0, 𝑥1, 𝑥2 Zahlen

Die NF und die SPF gibt es immer. Die NSTF gibt es nur, wenn 𝑦𝑆 · 𝑎 ≤ 0.

Der Graph einer quadratischen Funktion heißt Parabel

Definitionsbereich D 𝑓 = R

Wertebereich W 𝑓 = R
≥𝑦𝑆 falls 𝑎 > 0 undW 𝑓 = R

≤𝑦𝑆 falls 𝑎 < 0

Wichtige Beziehungen:

(NF → SPF)
𝑥𝑆 = − 𝑏

2𝑎
𝑦𝑆 = 𝑓 (𝑥𝑆)

(NSTF → SPF)
𝑥𝑆 =

𝑥1 + 𝑥2
2

𝑦𝑆 = 𝑓 (𝑥𝑆)

(NF, SPF → NSTF)
𝑓 (𝑥1) = 0

𝑓 (𝑥2) = 0
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Symmetrie:

• Eine quadratische Funktion ist achsensymmetrisch zur Senkrechten durch
ihren Scheitelpunkt.

• Eine quadratische Funktion ist nur dann gerade, also achsensymmetrisch
zur 𝑦-Achse, wenn 𝑐 = 0 ist.

6.3 Ganzrationale Funktionen und ihre Eigenschaften
Lineare und quadratische Funktionen sind Spezialfälle einer ganzrationalen
Funktion (auch Polynom):

𝑓 (𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + . . . + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

𝑎0, . . . , 𝑎𝑛 Zahlen, 𝑎𝑛 ≠ 0

𝑛: Grad von 𝑓 (𝑥) 𝑎𝑛: Leitkoeffizient von 𝑓 (𝑥)

𝑎0: 𝑦-Achsenabschnitt von 𝑓 (𝑥)

Definitionsbereich D 𝑓 = R

Wertebereich 𝑛 ungerade:W 𝑓 = R

𝑛 gerade:W 𝑓 nach
{
unten
oben

}
beschränkt, falls

{
𝑎𝑛 > 0
𝑎𝑛 < 0

}
Anzahl der Nullstellen und Extrema:

G
ra

d
vo

n
𝑓
(𝑥
)

Anzahl Nullstellen von 𝑓 (𝑥) Anzahl Extrema von 𝑓 (𝑥)

ungerade
mindestens 1 und
höchstens Grad

höchstens (Grad−1)

gerade höchstens Grad
mindestens 1 und

höchstens (Grad−1)
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Verhalten für betragsmäßig große 𝑥-Werte:

G
ra

d
vo

n
𝑓
(𝑥
)

Leitkoeffizient von 𝑓 (𝑥)

größer als 0 kleiner als 0

ungerade von −∞ nach +∞ von +∞ nach −∞

gerade von +∞ nach +∞ von −∞ nach −∞

Symmetrie:

• Eine ganzrationale Funktion ist genau dann gerade, also achsensymme-
trisch zur 𝑦-Achse, wenn in der Funktion nur gerade Potenzen von 𝑥
vorkommen, also alle Koeffizienten vor ungeraden Potenzen von 𝑥 sind
Null.

• Eine ganzrationale Funktion ist genau dann ungerade, also punktsymme-
trisch zum Ursprung, wenn in der Funktion nur ungerade Potenzen von 𝑥
vorkommen, also alle Koeffizienten vor geraden Potenzen von 𝑥 sind Null.

6.4 Beispiel: Ganzrationale Funktionen vom Grad 3

Der Graph einer ganzrationalen Funktion 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 vom Grad
3 hat folgenden typischen Verlauf:
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• Eine ganzrationale Funktion 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 vom Grad 3 hat
höchstens dann mehr als eine Nullstelle, wenn sie zwei Extrema besitzt.
Das ist genau dann der Fall, wenn 𝑏2 > 3𝑎𝑐 ist.

• Zu jeder ganzrationalen Funktion 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 vom Grad 3
gibt es einen Punkt, sodass die Funktion punktsymmetrisch zu diesem ist:

dieser Punkt ist
(
−𝑏
3𝑎

/ 2𝑏3 − 9𝑎𝑏𝑐 + 27𝑎2𝑑

27𝑎2

)
.

In diesem Punkt geht der Graph von einer Links- bzw. Rechtskrümmung
in eine Rechts- bzw. Linkskrümmung über.

6.5 Spezialfall: Die Potenzfunktionen
Als 𝑛-te Potenzfunktion bezeichnet man die spezielle ganzrationale Funktion

𝑓 (𝑥) = 𝑥𝑛

Für 𝑛 = 1 erhält man 𝑓 (𝑥) = 𝑥 und als Graph die Winkelhalbierende. Für
𝑛 = 2 erhält man 𝑓 (𝑥) = 𝑥2 und als Graph die Normalparabel.
Die Potenzfunktionen haben für 𝑛 ≥ 2 einen charakteristischen Verlauf:

6.6 Faktorisieren ganzrationaler Funktionen

6.6.1 Faktorisierung

Hat eine ganzrationale Funktion 𝑓 (𝑥) vom Grad 𝑛 eine Nullstelle 𝑥 = 𝑥1, also
𝑓 (𝑥1) = 0, dann lässt sich diese als Faktor (𝑥 − 𝑥1) abspalten.
Das bedeutet, es gibt eine ganzrationale Funktion 𝑔1(𝑥) vom Grad 𝑛 − 1,
sodass

𝑓 (𝑥) = (𝑥 − 𝑥1) · 𝑔1(𝑥) .
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Diesen Vorgang des Abspaltens kann man nun mit der ’Restfunktion’ 𝑔1(𝑥)
wiederholen, bis die verbleibende ’Restfunktion’ keine Nullstelle mehr besitzt.
Diesen Prozess nennt man Faktorisieren und man gelangt so zu einem Produkt

𝑓 (𝑥) = (𝑥 − 𝑥1) · (𝑥 − 𝑥2) · . . . (𝑥 − 𝑥𝑟) · 𝑔𝑟 (𝑥)

mit 𝑔𝑟 (𝑥) vom Grad 𝑛 − 𝑟 ohne Nullstellen.

Hat 𝑓 (𝑥) den Grad 𝑛 und findet man nach und nach 𝑛 Nullstellen, dann lässt
sich 𝑓 (𝑥) vollständig faktorisieren:

𝑓 (𝑥) = 𝑎𝑛(𝑥 − 𝑥1) · (𝑥 − 𝑥2) · . . . (𝑥 − 𝑥𝑛−1) · (𝑥 − 𝑥𝑛) .
Hinweise: Die Nullstellen müssen nicht unterschiedlich sein, sie können
mehrfach vorkommen. Man spricht dann von einer mehrfachen Nullstelle.
Außerdem lässt sich nicht jede ganzrationale Funktion vollständig faktorisieren.
Das ist der Fall, wenn die Funktion weniger Nullstellen hat, als ihr Grad erlaubt.
Beispiele: (Es sind jeweils alle Nullstellen abgespalten)

1. 𝑓 (𝑥) = 𝑥2 + 𝑥 − 2 = (𝑥 − 1) (𝑥 + 2)
2. 𝑔(𝑥) = 2𝑥2 + 8𝑥 + 8 = 2(𝑥 + 2) (𝑥 + 2) = 2(𝑥 + 2)2

3. ℎ(𝑥) = 𝑥4 + 𝑥3 − 𝑥 − 1 = (𝑥 − 1) (𝑥 + 1) (𝑥2 + 𝑥 + 1)
4. 𝑘 (𝑥) = 𝑥4 + 𝑥3 − 3𝑥2 − 𝑥 + 2 = (𝑥 − 1)2(𝑥 + 1) (𝑥 + 2)

Eine nützliche Eigenschaft ganzzahliger Koeffizienten:

In dem Fall, dass alle Koeffizienten der ganzrationalen Funktion 𝑓 (𝑥) ganz-
zahlig sind und der Leitkoeffizient 𝑎𝑛 = 1 ist, findet man alle ganzzahligen
Nullstellen als Teiler des 𝑦-Achsenabschnitts 𝑎0.

Achtung: Das bedeutet nicht, dass es keine weiteren Nullstellen geben kann!

7 Exponentialfunktion
7.1 Die allgemeine Exponentialfunktion 𝑏𝑥

Als Basis der allgemeinen Exponentialfunktion sind nur positive reelle
Zahlen 𝑏 > 0 zugelassen:

𝑓 (𝑥) = 𝑏𝑥

Definitionsbereich D 𝑓 = R

Wertebereich W 𝑓 = R
>0
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Monotonie: Die allgemeine Exponentialfunktion 𝑓 (𝑥) = 𝑏𝑥 ist für 𝑏 > 1
streng monoton steigend und für 𝑏 < 1 streng monoton fallend (für 𝑏 = 1
erhält man die konstante Funktion 𝑓 (𝑥) = 1).

7.2 Die Exponentialfunktion 𝑒𝑥

Eine spezielle Rolle spielt die Basis 𝑒 = 2,718281828459 . . . (Eulersche Zahl).
Die Funktion

𝑓 (𝑥) = 𝑒𝑥

heißt Exponentialfunktion. Für die allgemeine Exponentialfunktion gilt dann

𝑏𝑥 = 𝑒ln(𝑏)·𝑥

Die Monotonie überträgt sich: Die Exponentialfunktion 𝑓 (𝑥) = 𝑒𝑐·𝑥 ist für
𝑐 > 0 streng monoton steigend und für 𝑐 < 0 streng monoton fallend (für
𝑐 = 0 erhält man die konstante Funktion 𝑓 (𝑥) = 1).

7.3 Der Graph der Exponentialfunktion
Den Graphen der Exponentialfunktion zu einer Basis 𝑏 < 1 erhält man durch
Spiegelung des Graphen zur Basis 1

𝑏
> 1 an der 𝑦-Achse, denn es gilt

𝑏𝑥 =
( 1
𝑏

)−𝑥
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7.4 Spezielle Eigenschaften von 𝑓 (𝑥) = 𝑝(𝑥)𝑒𝑐·𝑥

Ist 𝑝(𝑥) eine ganzrationale Funktion vom Grad 𝑛 mit Leitkoeffizient 𝑎𝑛, dann
ergeben sich die Grenzwerte lim

𝑥→±∞
𝑝(𝑥)𝑒𝑐·𝑥 am Rand des Definitionsbereiches

aus den folgenden Tabellen.
Der wichtige Spezialfall 𝑓 (𝑥) = 𝑎𝑒𝑐·𝑥 ist darin enthalten: Man wählt dazu
eine konstante Funktion 𝑝(𝑥) = 𝑎, also 𝑝(𝑥) mit Grad 0.
Verhalten der Funktionswerte für betragsmäßig große 𝑥-Werte:

𝑛 gerade 𝑛 ungerade
lim
𝑥→+∞

𝑝(𝑥)𝑒𝑐·𝑥 𝑎𝑛 > 0 𝑎𝑛 < 0 𝑎𝑛 > 0 𝑎𝑛 < 0

𝑐 > 0 +∞ −∞ +∞ −∞
𝑐 < 0 0 0 0 0

𝑛 gerade 𝑛 ungerade
lim
𝑥→−∞

𝑝(𝑥)𝑒𝑐·𝑥 𝑎𝑛 > 0 𝑎𝑛 < 0 𝑎𝑛 > 0 𝑎𝑛 < 0

𝑐 > 0 0 0 0 0
𝑐 < 0 +∞ −∞ −∞ +∞

8 Logarithmusfunktion
8.1 Die allgemeine Logarithmusfunktion
Die Umkehrfunktion der allgemeinen Exponentialfunktion heißt allgemeine
Logarithmusfunktion. Für 𝑏 > 0 schreibt man

𝑓 (𝑥) = log𝑏 (𝑥)

Es gilt log𝑏 (𝑏𝑥) = 𝑏log𝑏 (𝑥) = 𝑥 sowie

Definitionsbereich D 𝑓 = R
>0

Wertebereich W 𝑓 = R

8.2 Die natürliche Logarithmusfunktion
Wie bei der Exponentialfunktion spielt auch bei der Logarithmusfunktion
die Basis 𝑒 eine spezielle Rolle. Die zugehörige Funktion heißt natürliche
Logarithmusfunktion. Man schreibt für diese Funktion

𝑓 (𝑥) = ln(𝑥)
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mit ln(𝑒𝑥) = 𝑒ln(𝑥) = 𝑥.
Man kann die allgemeine Logarithmusfunktion mit Hilfe der natürlichen
Logarithmusfunktion darstellen:

log𝑏 (𝑥) =
1

ln(𝑏) · ln(𝑥)

8.3 Der Graph der Logarithmusfunktion

Die Graphen zu den Basen 𝑏 > 1 und 1
𝑏
< 1 fallen bei Spiegelung an der

𝑥-Achse ineinander, denn es gilt:

log𝑏 (𝑥) = − log 1
𝑏
(𝑥) .

8.4 Spezielle Eigenschaften von 𝑓 (𝑥) = 𝑝(𝑥) ln(𝑥)

Ist 𝑝(𝑥) eine ganzrationale Funktion vom Grad 𝑛 mit Leitkoeffizient 𝑎𝑛 und
𝑦-Achsenabschnitt 𝑎0, dann ergeben sich folgende Grenzwerte an den Rändern
0 und +∞ des Definitionsbereiches

lim
𝑥→∞

𝑝(𝑥) ln(𝑥) =

{
+∞ falls 𝑎𝑛 > 0
−∞ falls 𝑎𝑛 < 0

lim
𝑥→0

𝑝(𝑥) ln(𝑥) =


−∞ falls 𝑎0 > 0
+∞ falls 𝑎0 < 0
0 falls 𝑎0 = 0, also 𝑝(0) = 0
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Außerdem gilt lim
𝑥→∞

ln(𝑥)
𝑝(𝑥) = 0 falls der Grad von 𝑝(𝑥) größer als Null ist.

9 Differentialrechnung
9.1 Differenzenquotient und Ableitung

Differenzenquotient
= Sekantensteigung

𝑓 (𝑥) − 𝑓 (𝑥0)
𝑥 − 𝑥0

Ableitung
= Grenzwert des Differenzenquotienten
= Differentialquotient
= Tangentensteigung

𝑓 ′(𝑥0) = lim
𝑥→𝑥0

𝑓 (𝑥) − 𝑓 (𝑥0)
𝑥 − 𝑥0

𝑓 ′(𝑥0) = lim
𝑡→0

𝑓 (𝑥0 + 𝑡) − 𝑓 (𝑥0)
𝑡

9.2 Ableitungsregeln

Faktorregel 𝑓 (𝑥) = 𝑎 · 𝑔(𝑥) 𝑓 ′(𝑥) = 𝑎 · 𝑔′(𝑥)

Summenregel 𝑓 (𝑥) = 𝑢(𝑥) + 𝑣(𝑥) 𝑓 ′(𝑥) = 𝑢′(𝑥) + 𝑣′(𝑥)

Produktregel 𝑓 (𝑥) = 𝑢(𝑥) · 𝑣(𝑥) 𝑓 ′(𝑥) = 𝑢′(𝑥) · 𝑣(𝑥) + 𝑢(𝑥) · 𝑣′(𝑥)

Quotientenregel 𝑓 (𝑥) = 𝑢(𝑥)
𝑣(𝑥) 𝑓 ′(𝑥) = 𝑢

′(𝑥) · 𝑣(𝑥) − 𝑢(𝑥) · 𝑣′(𝑥)(
𝑣(𝑥)

)2

Kettenregel 𝑓 (𝑥) = 𝑔
(
ℎ(𝑥)

)
𝑓 ′(𝑥) = 𝑔′

(
ℎ(𝑥)

)
· ℎ′(𝑥)

Spezialfall der Kettenregel:

𝑓 (𝑥) = 𝑔(𝑎𝑥 + 𝑏) =⇒ 𝑓 ′(𝑥) = 𝑎 · 𝑔′(𝑎𝑥 + 𝑏)
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9.3 Tangentengleichung

Geradengleichung der Tangente an 𝑓 (𝑥) im Punkt 𝑃
(
𝑥0/ 𝑓 (𝑥0)

)
:

𝑦 = 𝑓 ′(𝑥0) · 𝑥 +
(
𝑓 (𝑥0) − 𝑓 ′(𝑥0) · 𝑥0

)
Diese heißt Tangentengleichung von 𝑓 (𝑥).
Tangente an 𝑓 (𝑥) durch einen Punkt 𝑄(𝑥𝑄/𝑦𝑄):
Zur Bestimmung der Tangentengleichung an 𝑓 (𝑥) durch einen gegebenen
Punkt (𝑥𝑄/𝑦𝑄) setzt man 𝑥 = 𝑥𝑄 und 𝑦 = 𝑦𝑄 in die Tangentengleichung ein.
Das gibt eine Gleichung mit der Berührstelle 𝑥0 als unbekannte Größe. Diese
Gleichung löst man auf und erhält so eine Berührstelle 𝑥0 (oder mehrere).

9.4 Monotonie
Ist 𝑓 (𝑥) auf dem Intervall 𝐼 ⊂ R differenzierbar, dann gilt:

1a) 𝑓 ′(𝑥) ≥ 0 auf 𝐼 ⇐⇒ 𝑓 (𝑥) ist auf 𝐼 monoton steigend

1b) 𝑓 ′(𝑥) ≤ 0 auf 𝐼 ⇐⇒ 𝑓 (𝑥) ist auf 𝐼 monoton fallend

2a) 𝑓 ′(𝑥) > 0 auf 𝐼 =⇒ 𝑓 (𝑥) ist auf 𝐼 streng monoton steigend

2b) 𝑓 ′(𝑥) < 0 auf 𝐼 =⇒ 𝑓 (𝑥) ist auf 𝐼 streng monoton fallend
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9.5 Extrempunkte
Eine Stelle 𝑥 = 𝑥0 mit neutraler Steigung ist eine mögliche Extremstelle.
Das notwendige Kriterium für eine Extremstelle lautet damit:

𝑓 ′(𝑥0) = 0

Ist 𝑓 ′(𝑥0) = 0, dann lautet das hinreichende Kriterium für ein Maximum
(auch Hochpunkt) oder ein Minimum (auch Tiefpunkt):

𝑓 ′′(𝑥0) < 0 Max
(
𝑥0/ 𝑓 (𝑥0)

)
𝑓 ′(𝑥0) = 0 𝑓 ′′(𝑥0) > 0 Min

(
𝑥0/ 𝑓 (𝑥0)

)
𝑓 ′′(𝑥0) = 0 keine Entscheidung möglich

Im Fall 𝑓 ′(𝑥0) = 0 (insbesondere, wenn zusätzlich 𝑓 ′′(𝑥0) = 0 gilt) kann
man mit dem Vorzeichenwechselkriterium für 𝑓 ′(𝑥) entscheiden, ob ein
Extremum oder ein Sattelpunkt vorliegt:

9.6 Wendepunkte
Eine Stelle 𝑥 = 𝑥0 mit neutraler zweiter Ableitung ist eine mögliche Wende-
stelle. Der zugehörige Punkt heißt Wendepunkt.
In den Wendepunkten geht der Graph der Funktion von einer Links- bzw.
Rechtskrümmung in eine Rechts- bzw. Linkskrümmung über.
Die Wendepunkte einer Funktion 𝑓 (𝑥) sind genau die Extrema der Ableitungs-
funktion 𝑓 ′(𝑥).
Das notwendige Kriterium für eine Wendestelle lautet damit:

𝑓 ′′(𝑥0) = 0
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Ist 𝑓 ′′(𝑥0) = 0 dann lautet das hinreichende Kriterium für einen Wendepunkt:

𝑓 ′′(𝑥0) = 0
𝑓 ′′′(𝑥0) ≠ 0 WP

(
𝑥0/ 𝑓 (𝑥0)

)
𝑓 ′′′(𝑥0) = 0 keine Entscheidung möglich

Im Fall 𝑓 ′′(𝑥0) = 0 (insbesondere, wenn zusätzlich 𝑓 ′′′(𝑥0) = 0 gilt) kann
man mit dem Vorzeichenwechselkriterium für 𝑓 ′′(𝑥) entscheiden, ob ein
Wendepunkt vorliegt.
Spezialfall:

Ist 𝑓 ′(𝑥0) = 𝑓 ′′(𝑥0) = 0 aber 𝑓 ′′′(𝑥0) ≠ 0, so ist
(
𝑥0/ 𝑓 (𝑥0)

)
ein Sattelpunkt

9.7 Schnitt von Funktionen/Zusammengesetzte Funktionen

9.7.1 Zusammengesetzte Funktionen

Eine Funktion 𝑓 (𝑥) heißt zusammengesetzte Funktion, wenn sie auf verschie-
denen Bereichen ihres Definitionsbereiches durch zwei oder mehr Funktionen
beschrieben wird.

𝑓 (𝑥) =
{
𝑓1(𝑥) falls 𝑥 < 𝑥0

𝑓2(𝑥) falls 𝑥 ≥ 𝑥0

Man sagt dann kurz: 𝑓 (𝑥) ist an der Stelle 𝑥0 aus den Teilfunktionen 𝑓1(𝑥)
und 𝑓2(𝑥) zusammengesetzt. Die Stelle 𝑥0 heißt Verklebungsstelle.

9.7.2 Schnittpunkt/Sprungfreiheit

Schnittpunkte:

Zwei Funktionen 𝑓 (𝑥) und 𝑔(𝑥) schneiden sich, wenn ihre Graphen
sich schneiden.

Man erhält den 𝑥-Wert eines Schnittpunktes als Lösung der Gleichung

𝑓 (𝑥) = 𝑔(𝑥)

Den zugehörigen 𝑦-Wert erhält man durch Einsetzen in 𝑓 (𝑥) oder 𝑔(𝑥).
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Spezialfall: Die Nullstellen einer Funktion 𝑓 (𝑥) sind die Schnittpunkte des
Graphen von 𝑓 (𝑥) mit der 𝑥-Achse, also als Schnittpunkt von 𝑓 (𝑥) mit der
Funktion 𝑔(𝑥) = 0. Man erhält die Nullstellen als Lösungen der Gleichung

𝑓 (𝑥) = 0

Sprungfreiheit:

Eine zusammengesetzte Funktion, etwa 𝑓 (𝑥) =
{
𝑓1(𝑥) falls 𝑥 < 𝑥0

𝑓2(𝑥) falls 𝑥 ≥ 𝑥0

}
, heißt

an der Stelle 𝑥0 sprungfrei zusammengesetzt, wenn

𝑓1(𝑥0) = 𝑓2(𝑥0)

Ist eine der Funktionen an der Stelle 𝑥0 nicht definiert (im obigen Beispiel
𝑓1(𝑥)), dann muss man den Funktionswert gegebenenfalls durch den Grenzwert
ersetzen (im obigen Beispiel lim

𝑥→𝑥0
𝑓1(𝑥)).

Das ist z. B. nicht notwendig, wenn die Teilfunktionen durch Einschränkungen
der Definitionsbereiche konstruiert werden.
Zusammenhang zur Stetigkeit:
Eine an der Stelle 𝑥0 sprungfrei zusammengesetzte Funktion ist an der Stelle
𝑥0 stetig.

9.7.3 Berührung/Knickfreiheit

Berührpunkte:

Zwei Funktionen 𝑓 (𝑥) und 𝑔(𝑥) berühren sich, wenn ihre Graphen
sich schneiden und im Schnittpunkt die gleiche Steigung haben.

Man erhält den 𝑥-Wert eines Berührpunktes als Lösung der Gleichungen

𝑓 (𝑥) = 𝑔(𝑥) und 𝑓 ′(𝑥) = 𝑔′(𝑥)

Den zugehörigen 𝑦-Wert erhält man durch Einsetzen in 𝑓 (𝑥) oder 𝑔(𝑥).
Knickfreiheit:

Eine zusammengesetzte Funktion, etwa 𝑓 (𝑥) =
{
𝑓1(𝑥) falls 𝑥 < 𝑥0

𝑓2(𝑥) falls 𝑥 ≥ 𝑥0

}
, heißt

an der Stelle 𝑥0 knickfrei zusammengesetzt, wenn

𝑓1(𝑥0) = 𝑓2(𝑥0) und 𝑓 ′1 (𝑥0) = 𝑓 ′2 (𝑥0)
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Ist eine der Funktionen an der Stelle 𝑥0 nicht definiert (im obigen Beispiel
𝑓1(𝑥)), dann muss man die berechneten Werte gegebenenfalls durch die
Grenzwerte ersetzen (im obigen Beispiel lim

𝑥→𝑥0
𝑓1(𝑥) und lim

𝑥→𝑥0
𝑓 ′1 (𝑥)).

Das ist z. B. nicht notwendig, wenn die Teilfunktionen durch Einschränkungen
der Definitionsbereiche konstruiert werden.
Zusammenhang zur Differenzierbarkeit:
Eine an der Stelle 𝑥0 knickfrei zusammengesetzte Funktion ist an der Stelle 𝑥0
differenzierbar.

10 Integralrechnung
10.1 Stammfunktion

𝐹 (𝑥) heißt Stammfunktion von 𝑓 (𝑥) ⇐⇒ 𝐹′(𝑥) = 𝑓 (𝑥)

10.2 Bestimmtes Integral
Besitzt 𝑓 (𝑥) auf dem Intervall 𝐼 die Stammfunktion 𝐹 (𝑥), dann ist 𝑓 (𝑥) auf 𝐼
integrierbar. Für 𝑎, 𝑏 ∈ 𝐼 heißt∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
[
𝐹 (𝑥)

]𝑏
𝑎
= 𝐹 (𝑏) − 𝐹 (𝑎)

das (bestimmte) Integral von 𝑓 (𝑥) in den Grenzen 𝑎 und 𝑏.

Insbesondere gilt
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = −
∫ 𝑎

𝑏

𝑓 (𝑥) 𝑑𝑥

10.3 Unbestimmtes Integral/Integralfunktion
Besitzt 𝑓 (𝑥) die Stammfunktion 𝐹 (𝑥), dann schreibt man für das unbestimmte
Integral

𝐹 (𝑥) =
∫

𝑓 (𝑥) 𝑑𝑥 .

Die mit Hilfe des bestimmten Integrals definierte Funktion

𝐹𝑎 (𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡

heißt Integralfunktion zu 𝑓 (𝑥) mit 𝐹𝑎 (𝑎) = 0.
Die Integralfunktion 𝐹𝑎 (𝑥) ist eine Stamnmfunktion von 𝑓 (𝑥), das heißt:
𝐹′
𝑎 (𝑥) = 𝑓 (𝑥).
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10.4 Intervalladditionsregel
Ist 𝑓 (𝑥) auf dem Intervall 𝐼 integrierbar, dann gilt für 𝑎, 𝑏, 𝑐 ∈ 𝐼∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
∫ 𝑐

𝑎

𝑓 (𝑥) 𝑑𝑥 +
∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥

10.5 Anwendung: Flächenberechnung
Mit 𝐴( 𝑓 (𝑥); 𝑎, 𝑏) wird der Flächeninhalt der Fläche bezeichnet, die vom Gra-
phen von 𝑓 (𝑥), der 𝑥-Achse und den Geraden 𝑥 = 𝑎 und 𝑥 = 𝑏 eingeschlossen
wird.
Mit 𝐴( 𝑓 (𝑥), 𝑔(𝑥); 𝑎, 𝑏) wird der Flächeninhalt der Fläche bezeichnet, die vom
Graphen von 𝑓 (𝑥), dem Graphen von 𝑔(𝑥) und den Geraden 𝑥 = 𝑎 und 𝑥 = 𝑏
eingeschlossen wird.

10.5.1 Flächeninhalt zwischen Graph und 𝑥-Achse

𝑓 (𝑥) ≥ 0 zwischen 𝑎 und 𝑏 𝐴
(
𝑓 (𝑥), 𝑎, 𝑏) =

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

𝑓 (𝑥) ≤ 0 zwischen 𝑎 und 𝑏 𝐴
(
𝑓 (𝑥), 𝑎, 𝑏) = −

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥
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10.5.2 Flächeninhalt zwischen zwei Graphen

𝑓 (𝑥) ≥ 𝑔(𝑥) zwischen 𝑎 und 𝑏 𝐴
(
𝑓 (𝑥), 𝑔(𝑥), 𝑎, 𝑏) =

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑔(𝑥)

)
𝑑𝑥

𝑓 (𝑥) ≤ 𝑔(𝑥) zwischen 𝑎 und 𝑏 𝐴
(
𝑓 (𝑥), 𝑔(𝑥), 𝑎, 𝑏) =

∫ 𝑏

𝑎

(
𝑔(𝑥) − 𝑓 (𝑥)

)
𝑑𝑥

11 Übersicht: Ableitungen und Stammfunktionen

𝑓 (𝑥) 𝑓 ′(𝑥) 𝐹 (𝑥)

𝑥𝑛 𝑛 · 𝑥𝑛−1 1
𝑛+1 𝑥

𝑛+1

1
𝑥

− 1
𝑥2 ln(𝑥)

1
𝑥𝑛

(𝑛 > 1) − 𝑛

𝑥𝑛+1 − 1
(𝑛 − 1) 𝑥𝑛−1

𝑒𝑎𝑥 𝑎 𝑒𝑎𝑥 1
𝑎
𝑒𝑎𝑥

ln(𝑎𝑥) 1
𝑥

𝑥 ln(𝑎𝑥) + 𝑥

sin(𝑎𝑥) 𝑎 cos(𝑎𝑥) −1
𝑎

cos(𝑎𝑥)
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cos(𝑎𝑥) −𝑎 sin(𝑎𝑥) 1
𝑎

sin(𝑎𝑥)

12 Trigonometrie, Winkel- und Arkusfunktionen,
Schwingungen

12.1 Grundlegende Beziehungen am rechtwinkligen Dreieck

sin𝛼 = cos 𝛽 =
𝑎

𝑐

cos𝛼 = sin 𝛽 =
𝑏

𝑐

tan𝛼 = cot 𝛽 =
𝑎

𝑏

cot𝛼 = tan 𝛽 =
𝑏

𝑎

sin2 𝛼 + cos2 𝛼 = 1 , tan𝛼 =
sin𝛼
cos𝛼

, cot𝛼 =
cos𝛼
sin𝛼

=
1

tan𝛼

12.2 Trigonometrie am Einheitskreis

Die Werte für Sinus bzw. Kosinus
erhält man, indem man den zum Win-
kel gehörigen Punkt 𝐴 des Einheits-
kreises auf die 𝑦-Achse bzw. 𝑥-Achse
projiziert und abliest.
Die Werte für Tangens und Kotan-
gens ergibt sich als Länge der in der
Skizze angegebenen Projektionen.

Durch die Interpretation der trigonometrischen Ausdrücke als Projektionen
am Einheitskreis erhält man auf natürliche Weise auch negative Werte.
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12.3 Spezielle Werte und spezielle Symmetrien
Spezielle Symmetrien:

−𝛼 𝛼 − 90◦ 𝛼 + 90◦ 𝛼 + 180◦ 𝛼 + 270◦ 𝛼 + 360◦

sin(. . .) − sin𝛼 − cos𝛼 cos𝛼 − sin𝛼 − cos𝛼 sin𝛼

cos(. . .) cos𝛼 sin𝛼 − sin𝛼 − cos𝛼 sin𝛼 cos𝛼

tan(. . .) − tan𝛼 − cot𝛼 − cot𝛼 tan𝛼 − cot𝛼 tan𝛼

cot(. . .) − cot𝛼 − tan𝛼 − tan𝛼 cot𝛼 − tan𝛼 cot𝛼

Spezielle Werte:

0 30◦ 45◦ 60◦ 90◦

sin(. . .) 0 1
2

√
2

2

√
3

2 1

cos(. . .) 1
√

3
2

√
2

2
1
2 0

tan(. . .) 0
√

3
3 −

√
3 −

cot(. . .) −
√

3 1
√

3
3 0

Mit Hilfe der Symmetrien erhält man spezielle Werte für weitere Winkel.

12.4 Additionstheoreme
Die Werte der trigonometrischen Ausdrücke für Summen und Differenzen
von Winkeln lassen sich mit den Additionstheoremen berechnen:

sin(𝛼 ± 𝛽) = sin𝛼 · cos 𝛽 ± cos𝛼 · sin 𝛽

cos(𝛼 ± 𝛽) = cos𝛼 · cos 𝛽 ∓ sin𝛼 · sin 𝛽

tan(𝛼 ± 𝛽) = tan𝛼 ± tan 𝛽
1 ∓ tan𝛼 · tan 𝛽

Spezialfälle:

sin(2𝛼) = 2 sin𝛼 · cos𝛼 cos(2𝛼) = cos2 𝛼 − sin2 𝛼

tan(2𝛼) = 2 tan𝛼
1 − tan2 𝛼
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Mit Hilfe des trigonometrischen Pythagoras sin2 𝛼 + cos2 𝛼 = 1 und den
Definitionen für Tangens und Kotangens erhält man folgende quadratischen
Beziehungen:

sin2 𝛼 = 1 − cos2 𝛼 =
tan2 𝛼

1 + tan2 𝛼
=

1
1 + cot2 𝛼

cos2 𝛼 = 1 − sin2 𝛼 =
1

1 + tan2 𝛼
=

cot2 𝛼
1 + cot2 𝛼

tan2 𝛼 =
1

cot2 𝛼
=

sin2 𝛼

1 − sin2 𝛼
=

1 − cos2 𝛼

cos2 𝛼

cot2 𝛼 =
1

tan2 𝛼
=

1 − sin2 𝛼

sin2 𝛼
=

cos2 𝛼

1 − cos2 𝛼

12.5 Beziehungen am allgemeinen Dreieck

Sinussatz
𝑎 : 𝑏 : 𝑐 = sin𝛼 : sin 𝛽 : sin 𝛾

𝑎

sin𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 𝛾

Kosinussatz
𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝛼
𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝛽
𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾

12.6 Beziehung zwischen Winkel und Bogenmaß
Man kann jeden Winkel 𝜑 eindeutig durch die Länge des zugehörigen Bogens
auf dem Einheitskreis beschreiben und umgekehrt. Diese Länge 𝑥 heißt
Bogenmaß und es gelten die folgenden Beziehungen:
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𝑥 =
𝜋

180◦
· 𝜑 𝜑 =

180◦

𝜋
· 𝑥

Diese Formeln gelten uneingeschränkt auch für Winkel größer als 360◦ und
für Winkel kleiner als 0◦, z. B.

𝜑 −360◦ −90 0◦ 30◦ 45◦ 60◦ 90◦ 135◦ 180◦ 720◦

𝑥 −2𝜋 −𝜋
2

0
𝜋

6
𝜋

4
𝜋

3
𝜋

2
3𝜋
4

𝜋 4𝜋

12.7 Winkelfunktionen
Die Projektion am Einheitskreis ergibt z. B. für den Sinus zwischen 0◦ und
360◦ folgende Werte:

Nach Übergang vom Winkel zum Bogenmaß und Erweiterung auf 𝑥-Werte klei-
ner als Null und größer als 2𝜋 erhält man die Graphen der Winkelfunktionen
(auch trigonometrischen Funktionen):
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12.8 Anwendung: Die Beschreibung von Schwingungen
Schwingungen spielen in vielen technischen und physikalischen Anwendun-
gen eine große Rolle. Als Beispiel seien hier mechanische Schwingungen
genannt, die in ihrer einfachsten Form durch Feder- oder Fadenpendel realisiert
werden. Ebenso bilden Schwingungen eine Grundlage der Untersuchung von
Wechselstromkreisen in der Elektrotechnik.

𝑓 =
1
𝑇

𝑇 : Periodendauer (in 𝑠)

𝑓 : Frequenz (in 1
𝑠
)

𝜔 = 2𝜋 𝑓 𝜔: Winkelgeschwindigkeit / Kreisfre-
quenz (in 1

𝑠
)

𝐴(𝑡) = 𝐴0 · sin(𝜔𝑡 + 𝜑)
𝐴(𝑡): Auslenkung zur Zeit 𝑡

𝐴0: Maximale Auslenkung / Amplitude

𝜑: Phasenverschiebung
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13 Komplexe Zahlen mit Anwendungen
13.1 Die grundlegende Identität der komplexen Zahlen
Komplexe Zahlen sind Zahlen der Form

𝑧 = 𝑎 + 𝑗 · 𝑏

mit 𝑎, 𝑏 ∈ R.
Die zusätzliche Zahl 𝑗 heißt imaginäre Einheit1 und für sie gilt

𝑗2 = −1

Bezeichnungen:

Realteil von 𝑧 = 𝑎 + 𝑗 · 𝑏 Re
(
𝑧
)
= 𝑎

Imaginärteil von 𝑧 = 𝑎 + 𝑗 · 𝑏 Im
(
𝑧
)
= 𝑏

1Neben der im Text und in technischen Anwendungen verwendeten Bezeichnung 𝑗 gibt
es die in der mathematischen Literatur verwendete Bezeichnung 𝑖 der imaginären Einheit.
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13.2 Darstellung komplexer Zahlen

Koordinatenschreibweise

(Gaußsche Schreibweise)

𝑧 = Re
(
𝑧
)
+ 𝑗 · Im

(
𝑧
)

Eulersche Schreibweise

(Exponentialschreibweise)

𝑧 =
��𝑧�� · 𝑒 𝑗 ·𝜑

Trigonometrische Schreibweise

(Polarkoordinatenschreibweise)

𝑧 =
��𝑧�� · ( cos 𝜑 + 𝑗 · sin 𝜑

)
Dabei gelten die folgenden Beziehungen:

��𝑧�� = √︃
Re

(
𝑧
)2 + Im

(
𝑧
)2

𝜑 = arctan

(
Im

(
𝑧
)

Re
(
𝑧
) )

Spezialfälle:

𝑗 = 𝑒 𝑗 ·
𝜋
2 − 𝑗 = 1

𝑗
= 𝑒− 𝑗 ·

𝜋
2

13.3 Konjugiert komplexe Zahl
Zu einer komplexen Zahl 𝑧 gibt es die konjugiert komplexe Zahl 𝑧∗:

𝑧 𝑧∗

𝑎 + 𝑗 · 𝑏 𝑎 − 𝑗 · 𝑏��𝑧�� · 𝑒 𝑗 ·𝜑 ��𝑧�� · 𝑒− 𝑗 ·𝜑
𝑧 · 𝑧∗ =

��𝑧��2
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13.4 Rechnen mit komplexen Zahlen

Addition und
Subtraktion

𝑧 + 𝑤 𝑧 − 𝑤

𝑧 = 𝑎 + 𝑗 · 𝑏
𝑤 = 𝑐 + 𝑗 · 𝑑

(𝑎 + 𝑐) + 𝑗 · (𝑏 + 𝑑) (𝑎 − 𝑐) + 𝑗 · (𝑏 − 𝑑)

Multiplikation
und Division

𝑧 · 𝑤
𝑧

𝑤

𝑧 = 𝑎 + 𝑗 · 𝑏
𝑤 = 𝑐 + 𝑗 · 𝑑

(𝑎𝑐 − 𝑏𝑑) + 𝑗 · (𝑎𝑑 + 𝑏𝑐) (𝑎𝑐 + 𝑏𝑑) + 𝑗 · (𝑏𝑐 − 𝑎𝑑)
𝑐2 + 𝑑2

𝑧 =
��𝑧�� · 𝑒 𝑗 ·𝜑

𝑤 =
��𝑤�� · 𝑒 𝑗 ·𝜓 ��𝑧�� · ��𝑤�� · 𝑒 𝑗 ·(𝜑+𝜓) ��𝑧����𝑤�� · 𝑒 𝑗 ·(𝜑−𝜓)
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Spezialfall:
1
𝑧

=
𝑧∗��𝑧��2 mit

1
𝑧

𝑧 = 𝑎 + 𝑗 · 𝑏 𝑎

𝑎2 + 𝑏2 − 𝑗 · 𝑏

𝑎2 + 𝑏2

𝑧 =
��𝑧�� · 𝑒 𝑗 ·𝜑 1��𝑧�� · 𝑒− 𝑗 ·𝜑

13.5 Formel von Moivre und komplexe Wurzeln
Die komplexe Zahl 𝑧 = 𝑟 · (cos 𝜑 + 𝑗 · sin 𝜑) hat die komplexen Potenzen

𝑧𝑛 = 𝑟𝑛 ·
(
cos(𝑛𝜑) + 𝑗 · sin(𝑛𝜑)

)
Spezialfall 𝑟 = 1: Die Formel von Moivre

(cos 𝜑 + 𝑗 · sin 𝜑)𝑛 = cos(𝑛𝜑) + 𝑗 · sin(𝑛𝜑)

Die Gleichung 𝑤𝑛 = 𝑧 hat 𝑛 unterschiedliche Lösungen, die komplexen
Wurzeln. Für 𝑘 = 0, 1, . . . , 𝑛 − 1 sind das:

𝑛
√︁
𝑧 = 𝑛

√
𝑟

(
cos 𝜑+2𝑘𝜋

𝑛
+ 𝑗 · sin 𝜑+2𝑘𝜋

𝑛

)
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Spezialfall: Die 𝑛-ten Einheitswurzeln

𝑒𝑛,𝑘 = cos 2𝑘𝜋
𝑛

+ 𝑗 · sin 2𝑘𝜋
𝑛

für 𝑘 = 0, 1, . . . , 𝑛 − 1 .

Die Einheitswurzeln liegen (ausgehend von 𝑒𝑛,0 = 1) symmetrisch auf dem
Einheitskreis verteilt, z. B.

• 𝑛 = 2: 𝑒2,0 = 1, 𝑒2,1 = −1

• 𝑛 = 3: 𝑒3,0 = 1, 𝑒3,1 = −1
2 + 𝑗 ·

√
3

2 , 𝑒3,2 = −1
2 − 𝑗 ·

√
3

2

• 𝑛 = 4: 𝑒4,0 = 1, 𝑒4,1 = 𝑗 , 𝑒4,2 = −1, 𝑒4,3 = − 𝑗

13.6 Anwendung: Widerstände im Wechselstromkreis

Bezugsgröße: 𝑈 = 𝑈 = 𝑈 · 𝑒 𝑗 ·0
Verwendete Bezeichnung: 𝜔 = 2𝜋 𝑓 mit Frequenz 𝑓 der Spannungsquelle

Ohmscher
Widerstand

(𝑅)

𝐼 = 𝐼 = 𝐼 · 𝑒 𝑗 ·0
keine Phasenverschie-
bung zwischen Strom
und Spannung

𝑅 =
𝑈

𝐼
=
𝑈

𝐼

Kapazitiver
Widerstand

(𝐶)

𝐼 = 𝑗 · 𝐼 = 𝐼 · 𝑒 𝑗 · 𝜋2
Strom eilt Spannung
um 90◦ voraus

𝑋𝐶 =
𝑈

𝐼
= − 𝑗 · 𝑋𝐶 = 𝑋𝐶 · 𝑒− 𝑗 · 𝜋2

𝑋𝐶 =
1
𝜔𝐶

Induktiver
Widerstand

(𝐿)

𝐼 = − 𝑗 · 𝐼 = 𝐼 · 𝑒− 𝑗 · 𝜋2
Strom eilt Spannung
um 90◦ nach

𝑋𝐿 =
𝑈

𝐼
= 𝑗 · 𝑋𝐿 = 𝑋𝐿 · 𝑒 𝑗 ·

𝜋
2

𝑋𝐿 = 𝜔 𝐿
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Widerstände 𝑍 einfacher Serienschaltungen
Bezeichnungen: 𝑍 =

��𝑍 ��, 𝜑 = arctan
( Im(𝑍)

Re(𝑍)
)

𝑍 𝑍 𝜑

𝑅 − 𝑗 · 𝑋𝐶
√︃
𝑅2 + 𝑋2

𝐶
arctan

(
−𝑋𝐶

𝑅

)
𝑅 + 𝑗 · 𝑋𝐿

√︃
𝑅2 + 𝑋2

𝐿
arctan( 𝑋𝐿

𝑅
)

𝑗 ·
(
𝑋𝐿 − 𝑋𝐶

)
𝑋𝐿 − 𝑋𝐶 ±90◦

𝑅 + 𝑗 · (𝑋𝐿 − 𝑋𝐶)
√︁
𝑅2 + (𝑋𝐿 − 𝑋𝐶)2 arctan

( 𝑋𝐿−𝑋𝐶
𝑅

)
Widerstände 𝑍 einfacher Parallelschaltungen,

1
𝑍

1
𝑍

𝜑

1
𝑅
+ 𝑗 · 1

𝑋𝐶

√︃
1
𝑅2 + 1

𝑋2
𝐶

arctan(− 𝑅
𝑋𝐶

)

1
𝑅
− 𝑗 · 1

𝑋𝐿

√︃
1
𝑅2 + 1

𝑋2
𝐿

arctan
(
𝑅
𝑋𝐿

)
𝑗 ·

( 1
𝑋𝐶

− 1
𝑋𝐿

) 1
𝑋𝐶

− 1
𝑋𝐿

±90◦

1
𝑅
+ 𝑗 ·

( 1
𝑋𝐶

− 1
𝑋𝐿

) √︃
1
𝑅2 +

( 1
𝑋𝐶

− 1
𝑋𝐿

)2 arctan
(
𝑅
𝑋𝐿

− 𝑅
𝑋𝐶

)
Zeigerbilder zu den Serienschaltungen:

Die Zeigerbilder der Parallelschaltungen nutzen statt der Widerstandswerte 𝑍
deren Kehrwerte 1

𝑍
.
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14 Analytische Geometrie
14.1 Darstellung von Vektoren

Als Vektor ®𝑣 bezeichnet man einen Repräsentanten der Menge aller Pfeile
gleicher Länge und gleicher Richtung.

in der Ebene im Raum

Komponenten
eines Vektors

®𝑣 =
(
𝑣1
𝑣2

)
®𝑣 = ©­«

𝑣1
𝑣2
𝑣3

ª®¬
Ortsvektor
des Punktes 𝐴(𝑎1/𝑎2)
bzw. 𝐴(𝑎1/𝑎2/𝑎3)

−→
0𝐴 =

(
𝑎1
𝑎2

)
−→
0𝐴 =

©­«
𝑎1
𝑎2
𝑎3

ª®¬
Verbindungsvektor
zweier Punkte 𝐴(𝑎1/𝑎2)
und 𝐵(𝑏1/𝑏2) bzw.
𝐴(𝑎1/𝑎2/𝑎3) und
𝐵(𝑏1/𝑏2/𝑏3)

−−→
𝐴𝐵 =

(
𝑏1 − 𝑎1
𝑏2 − 𝑎2

)
−−→
𝐴𝐵 =

©­«
𝑏1 − 𝑎1
𝑏2 − 𝑎2
𝑏3 − 𝑎3

ª®¬

14.2 Vektorrechnung I: Addition, Subtraktion, skalare Multiplika-
tion

in der Ebene im Raum

Addition, Subtraktion
von Vektoren

®𝑣 ± ®𝑤 =

(
𝑣1
𝑣2

)
±

(
𝑤1
𝑤2

)
=

(
𝑣1 ± 𝑤1
𝑣2 ± 𝑤2

) ®𝑣 ± ®𝑤 =
©­«
𝑣1
𝑣2
𝑣3

ª®¬ ± ©­«
𝑤1
𝑤2
𝑤3

ª®¬
=

©­«
𝑣1 ± 𝑤1
𝑣2 ± 𝑤2
𝑣3 ± 𝑤3

ª®¬
Skalare Multiplikation
mit 𝑠 ∈ R

𝑠 · ®𝑣 = 𝑠 ·
(
𝑣1
𝑣2

)
=

(
𝑠 · 𝑣1
𝑠 · 𝑣2

)
𝑠 · ®𝑣 = 𝑠 · ©­«

𝑣1
𝑣2
𝑣3

ª®¬ =
©­«
𝑠 · 𝑣1
𝑠 · 𝑣2
𝑠 · 𝑣3

ª®¬
• Zwei Vektoren ®𝑣 und ®𝑤 heißen linear abhängig (oder kollinear), wenn es

eine Zahl 𝑠 gibt, sodass ®𝑣 = 𝑠 · ®𝑤.
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• Mehr als zwei Vektoren ®𝑣1, ®𝑣2, . . . , ®𝑣𝑛 heißen linear abhängig, wenn es
Zahlen 𝑠1, 𝑠2, . . . , 𝑠𝑛 gibt, die nicht alle Null sind, sodass

𝑠1 · ®𝑣1 + 𝑠2 · ®𝑣2 + . . . + 𝑠𝑛 · ®𝑣𝑛 = 0 .

• Sind Vektoren nicht linear abhängig, dann heißen sie linear unabhängig.

14.3 Vektorrechnung II: Betrag, Skalar- und Kreuzprodukt, Winkel
Zwei Vektoren, die am gleichen Punkt starten, schließen einen Winkel 𝛼 mit
0◦ ≤ 𝛼 ≤ 180◦ ein. ]

in der Ebene im Raum

Länge/Betrag eines
Vektors

|®𝑣 | =
√︁
(𝑣1)2 + (𝑣2)2 |®𝑣 | =

√︁
(𝑣1)2 + (𝑣2)2 + (𝑣3)2

Skalarprodukt zweier
Vektoren

®𝑣 ◦ ®𝑤 = 𝑣1 ·𝑤1 + 𝑣2 ·𝑤2 ®𝑣◦ ®𝑤 = 𝑣1 ·𝑤1+𝑣2 ·𝑤2+𝑣3 ·𝑤3

Kreuzprodukt/Vektor-
produkt zweier Vekto-
ren

®𝑣 × ®𝑤 =
©­«
𝑣1
𝑣2
𝑣3

ª®¬ × ©­«
𝑤1
𝑤2
𝑤3

ª®¬
=

©­«
𝑣2 · 𝑤3 − 𝑣3 · 𝑤2
𝑣3 · 𝑤1 − 𝑣1 · 𝑤3
𝑣1 · 𝑤2 − 𝑣2 · 𝑤1

ª®¬
Von zwei Vektoren ®𝑣, ®𝑤
eingeschlossener Win-
kel 𝛼

𝛼 = arccos
(
®𝑣 ◦ ®𝑤
|®𝑣 | · | ®𝑤 |

)
𝛼 = arccos

(
®𝑣 ◦ ®𝑤
|®𝑣 | · | ®𝑤 |

)
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Normalenvektor ®𝑛 zu
zwei Vektoren ®𝑣 und ®𝑤

®𝑛 = ®𝑣 × ®𝑤

Statt ®𝑣 ◦ ®𝑤 sind auch ®𝑣 · ®𝑤 und ⟨®𝑣, ®𝑤⟩ geläufige Bezeichnungen für das
Skalarprodukt.

Skalarprodukt Kreuzprodukt/Normalenvektor

14.4 Darstellungen von Geraden

in der Ebene im Raum

Parameterform
einer Geraden 𝑔 mit
Aufpunktvektor2 ®𝑎 und
Richtungsvektor ®𝑣

𝑔 : ®𝑥(𝑡) = ®𝑎 + 𝑡 · ®𝑣
=

(
𝑎1
𝑎2

)
+ 𝑡 ·

(
𝑣1
𝑣2

) 𝑔 : ®𝑥(𝑡) = ®𝑎 + 𝑡 · ®𝑣

=
©­«
𝑎1
𝑎2
𝑎3

ª®¬+ 𝑡 · ©­«
𝑣1
𝑣2
𝑣3

ª®¬
Koordinatenform
einer Geraden 𝑔

𝑔 : 𝑎 · 𝑥 + 𝑏 · 𝑦 = 𝑑

2Statt Aufpunktvektor sagt man auch Stützvektor.
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14.5 Darstellungen von Ebenen im Raum

im Raum

Parameterform
einer Ebene 𝐸 mit
Aufpunktvektor ®𝑎 und
Richtungsvektoren ®𝑣
und ®𝑤

𝐸 : ®𝑥(𝑡, 𝑠) = ®𝑎 + 𝑡 · ®𝑣 + 𝑠 · ®𝑤

=
©­«
𝑎1
𝑎2
𝑎3

ª®¬ + 𝑡 · ©­«
𝑣1
𝑣2
𝑣3

ª®¬ + 𝑠 · ©­«
𝑤1
𝑤2
𝑤3

ª®¬
Koordinatenform
einer Ebenen 𝐸 mit
Aufpunktvektor ®𝑎 und
Normalenvektor

®𝑛 =
(
𝑎
𝑏
𝑐

)
𝐸 : 𝑎 · 𝑥 + 𝑏 · 𝑦 + 𝑐 · 𝑧 = 𝑑
wobei 𝑑 = ®𝑛 ◦ ®𝑎

Normalenform
einer Ebenen 𝐸 mit
Aufpunktvektor ®𝑎 und
Normalenvektor ®𝑛

𝐸 : ®𝑛 ◦
((
𝑥
𝑦
𝑧

)
− ®𝑎

)
= 0
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14.6 Abstände im Raum

Ebenen: 𝐸 : 𝑎 · 𝑥 + 𝑏 · 𝑦 + 𝑐 · 𝑧 = 𝑑 wobei ®𝑛 =
(
𝑎
𝑏
𝑐

)
𝐹 : ®𝑥(𝑡, 𝑠) = ®𝑎 + 𝑡 · ®𝑣1 + 𝑠 · ®𝑣2

Geraden: 𝑔 : ®𝑥(𝑡) = ®𝑒 + 𝑡 · ®𝑤, ℎ : ®𝑥(𝑡) = ®𝑓 + 𝑡 · ®𝑢

Punkt: 𝑃(𝑝1/𝑝2/𝑝2) mit Ortsvektor ®𝑝 =
−→
0𝑃

Konstellation Abstand

Punkt/Gerade
𝑑 (𝑃, 𝑔)

𝑑 (𝑃, 𝑔) =
�� ®𝑤 × ( ®𝑒 − ®𝑝)

���� ®𝑤��
Punkt/Ebene
𝑑 (𝑃, 𝐸)

𝑑 (𝑃, 𝐸) =
��𝑎𝑝1 + 𝑏𝑝2 + 𝑐𝑝3 − 𝑑

��
√
𝑎2 + 𝑏2 + 𝑐2

=

��®𝑛 ◦ ®𝑝 − 𝑑
����®𝑛��

Gerade/Gerade
𝑑 (𝑔, ℎ)

𝑑 (𝑔, ℎ) =
�� ®𝑤 × ( ®𝑒 − ®𝑓 )

���� ®𝑤�� (parallel)

𝑑 (𝑔, ℎ) =
��( ®𝑤 × ®𝑢) ◦ ( ®𝑒 − ®𝑓 )

���� ®𝑤 × ®𝑢
�� (windschief)

54



Gerade/Ebene parallel
𝑑 (𝑔, 𝐸)

𝑑 (𝑔, 𝐸) =
��®𝑛 ◦ ®𝑒 − 𝑑

����®𝑛��
Ebene/Ebene parallel
𝑑 (𝐸, 𝐹)

𝑑 (𝐸, 𝐹) =
��®𝑛 ◦ ®𝑎 − 𝑑

����®𝑛��

14.7 Lotpunkte, Lotgerade

Ortsvektor des Lotpunktes von 𝑃 mit
−→
0𝑃 = ®𝑝 auf 𝐸 : ®𝑥 ◦ ®𝑛 = 𝑑

®𝑝 + 𝑑 − ®𝑝 ◦ ®𝑛
| ®𝑛|2

®𝑛

Ortsvektor des Lotpunktes von 𝑃 mit
−→
0𝑃 = ®𝑝 auf 𝑔 : ®𝑥(𝑡) = ®𝑎 + 𝑡 ®𝑣

®𝑎 + ( ®𝑝 − ®𝑎) ◦ ®𝑣
|®𝑣 |2

®𝑣

Parameterform der Lotgeraden von
𝑔 : ®𝑥(𝑡) = ®𝑎 + 𝑡 ®𝑣 in 𝐸 : ®𝑥 ◦ ®𝑛 = 𝑑

(
®𝑎+ 𝑑 − ®𝑎 ◦ ®𝑛

| ®𝑛|2
®𝑛
)
+ 𝑡

(
(®𝑣× ®𝑛) × ®𝑛

)
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14.8 Gegenseitige Lage von Geraden und Ebenen

14.8.1 Gegenseitige Lage Gerade/Gerade

𝑔1 : ®𝑥(𝑡) = ®𝑎 + 𝑡 ®𝑣 und 𝑔2 : ®𝑥(𝑡) = ®𝑏 + 𝑡 ®𝑤

®𝑣 = 𝛼 · ®𝑤

Ja

Nein

( ®𝑎 − ®𝑏) × ®𝑣 = 0

( ®𝑎 − ®𝑏) ◦ (®𝑣 × ®𝑤) = 0

Ja

Nein

Ja

Nein

𝑔1, 𝑔2 identisch

𝑔1, 𝑔2 echt parallel

𝑔1, 𝑔2 besitzen
Schnittpunkt

𝑔1, 𝑔2 windschief

14.8.2 Gegenseitige Lage Gerade/Ebene

𝑔 : ®𝑥(𝑡) = ®𝑎 + 𝑡 ®𝑣 und 𝐸 : ®𝑥(𝑡, 𝑠) = ®𝑏 + 𝑡 ®𝑤1 + 𝑠 ®𝑤2

®𝑣 ◦ ( ®𝑤1 × ®𝑤2) = 0

Ja

Nein

( ®𝑎 − ®𝑏) ◦ ( ®𝑤1 × ®𝑤2) = 0

Ja

Nein

𝑔 in 𝐸 enthalten

𝑔, 𝐸 echt parallel

𝑔, 𝐸 besitzen
Schnittpunkt
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14.8.3 Gegenseitige Lage Ebene/Ebene

𝐸1 : ®𝑥(𝑡, 𝑠) = ®𝑎 + 𝑡 ®𝑣1 + 𝑠®𝑣2 und 𝐸2 : ®𝑥(𝑡, 𝑠) = ®𝑏 + 𝑡 ®𝑤1 + 𝑠 ®𝑤2

(®𝑣1 × ®𝑣2) × ( ®𝑤1 × ®𝑤2) = 0

Ja

Nein

( ®𝑎 − ®𝑏) ◦ ( ®𝑤1 × ®𝑤2) = 0

Ja

Nein

𝐸1, 𝐸2 identisch

𝐸1, 𝐸2 echt parallel

𝐸1, 𝐸2 besitzen
Schnittgerade

15 Statistik
15.1 Absolute und relative Häufigkeit statistischer Daten
Im Folgenden sind 𝑥1, 𝑥2, . . . , 𝑥𝑘 die unterschiedlichen Werte einer 𝑛-elemen-
tigen Datenmenge; insbesondere ist 𝑛 ≥ 𝑘 .
Die Zahl 𝑛 heißt Umfang der Datenreihe.

Absolute Häufigkeit
des Wertes 𝑥𝑖
= Anzahl von 𝑥𝑖 in der
Datenmenge

𝐻𝑖

𝑘∑︁
𝑖=1

𝐻𝑖 = 𝐻1 + 𝐻2 + . . . + 𝐻𝑘 = 𝑛

Relative Häufigkeit
des Wertes 𝑥𝑖

ℎ𝑖 =
𝐻𝑖

𝑛

𝑘∑︁
𝑖=1

ℎ𝑖 = ℎ1 + ℎ2 + . . . + ℎ𝑘 = 1
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15.2 Statistische Streu- und Lagemaße

15.2.1 Mittelwerte, Varianz und Standardabweichung

Ein wichtiges Lagemaß ist der arithmetische Mittelwert. Das zugehörige
Streumaß ist die Varianz bzw. deren Quadratwurzel die Standardabweichung:

Stat. Mittelwert / arithme-
tischer Mittelwert

𝑥 = Summe aller Werte/𝑛

=
1
𝑛

𝑘∑︁
𝑖=1

𝐻𝑖 · 𝑥𝑖 =
𝑘∑︁
𝑖=1

ℎ𝑖 · 𝑥𝑖

Stat. Varianz 𝜎2 =
1
𝑛

𝑘∑︁
𝑖=1

𝐻𝑖 · (𝑥𝑖 − 𝑥)2 =

𝑘∑︁
𝑖=1

ℎ𝑖 · (𝑥𝑖 − 𝑥)2

Stat. Standardabweichung 𝜎 =
√︁
𝜎2

Weitere Mittelwerte:

Geometrischer Mittelwert
(Daten positiv)

𝑥geo =
𝑛
√

Produkt aller Werte

=
𝑛

√︃
𝑥
𝐻1
1 · 𝑥𝐻2

2 · . . . · 𝑥𝐻𝑘

𝑘
= 𝑥

ℎ1
1 ·𝑥ℎ2

2 ·. . .·𝑥ℎ𝑘
𝑘

Harmonischer Mittelwert
(Daten ≠ 0)

𝑥harm = 𝑛/Summe aller Kehrwerte
=

𝑛

𝑘∑︁
𝑖=1

𝐻𝑖

𝑥𝑖

=
1

𝑘∑︁
𝑖=1

ℎ𝑖

𝑥𝑖

15.2.2 Median, Quartile und Interquartilabstand

Den Median bestimmt man, indem man die Daten inklusive sich wiederho-
lender Daten der Größe nach sortiert, also 𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑛−1 ≤ 𝑦𝑛:

Median 𝑦med = Der Wert, für den die Hälfte aller Datenwerte
links von ihm und die andere Hälfte rechts von
ihm liegen

=

{
𝑦 𝑛+1

2
, falls 𝑛 ungerade

1
2
(
𝑦 𝑛

2
+ 𝑦 𝑛

2+1
)
, falls 𝑛 gerade

Kennt man den Median, dann hat man die Datenreihe in zwei Hälften zerlegt.
Dabei wird der Median –falls der Umfang 𝑛 der Datenreihe ungerade ist–
weder zur unteren noch zur oberen Hälfte gezählt.
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Die Mediane der oberen und unteren Hälfte der Datenreihe liefern ein zum
Median passendes Streumaß. Die beiden zugehörigen Werte bezeichnet man
als Quartile. Genauer:

unteres Quartil 𝑦quart− = Median der unteren Hälfte der Datenwerte

oberes Quartil 𝑦quart+ = Median der oberen Hälfte der Datenwerte

Grob kann man sagen, dass die Quartile und der Median die Datenreihe in vier
Viertel unterteilen. Das untere Quartil ist der obere Wert des unteren Viertels
und das obere Quartil ist der untere Wert des oberen Viertels einer Datenreihe.
Damit liegen zwischen unterem Quartil und Median und zwischen Median
und oberem Quartil jeweils ein Viertel der Datenreihe.3

Als Interquartilabstand bezeichnet man die Differenz

IQR = 𝑦quart+ − 𝑦quart−

Der IQR gibt die Breite des Bereichs um den Median an, in dem sich die
Hälfte aller Werte der Datenreihe befinden.

16 Kombinatorik
16.1 Fakultät und Binomialkoeffizient

Fakultät 𝑛! = 1 · 2 · 3 · . . . · (𝑛 − 1) · 𝑛

Binomialkoeffizient
(
𝑛

𝑟

)
=

𝑛!
𝑘!(𝑛 − 𝑟)!

Spezialfall: 0! = 1
Eigenschaften des Binomialkoeffizienten:(

𝑛

𝑟

)
=

(
𝑛

𝑛 − 𝑟

) (
𝑛

𝑟

)
+

(
𝑛

𝑟 + 1

)
=

(
𝑛 + 1
𝑟 + 1

)
(
𝑛

0

)
+

(
𝑛

1

)
+ . . . +

(
𝑛

𝑛 − 1

)
+

(
𝑛

𝑛

)
= 2𝑛

3Der Begriff Quartil ist im Gegensatz zum Median in der Literatur nicht eindeu-
tig festgelegt. Wendet man statt der hier verwendeten Definition die Beschreibung aus
https://de.wikipedia.org/wiki/Empirisches_Quantil an, dann kann es zu leichten Abweichun-
gen der berechneten Werte kommen.
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16.2 Urnenmodell
Ein Urnenmodell besteht aus einer Urne mit 𝑛 Kugeln. Aus dieser Urne
werden auf verschiedene Arten Kugeln gezogen. Dabei kann es eine Rolle
spielen, in welcher Reihenfolge man die Kugeln zieht und ob man die Kugeln
nach dem Ziehen zurücklegt.
In der folgenden Tabelle ist die Anzahl der jeweils möglichen Ziehungen
angegeben.

• Alle Kugeln haben die gleiche Farbe. Es werden 𝑟-Kugeln gezogen:

ohne Zurücklegen
(ohne Wiederholung)

mit Zurücklegen
(mit Wiederholung)

mit Reihenfolge
(Variationen)

𝑛!
(𝑛 − 𝑟)! (nPr) 𝑛𝑟

ohne Reihenfolge
(Kombinationen)

(
𝑛

𝑟

)
(nCr)

(
𝑛 + 𝑟 − 1

𝑟

)
Spezialfall 𝒓 = 𝒏: Es werden mit Beachtung der Reihenfolge und ohne
Zurücklegen alle Kugeln gezogen. Die Anzahl der möglichen Ziehungen
ist

𝑛!

Man spricht von Permutationen.
• Die Kugeln besitzen ℓ unterschiedliche Farben.

Die Kugeln mit der Farbe 𝑖 tritt 𝑚𝑖-mal auf, d. h. 𝑚1 + 𝑚2 + . . . + 𝑚ℓ = 𝑛.
Es werden alle 𝑛 Kugeln unter Beachtung der farblichen Reihenfolge ohne
Zurücklegen gezogen. Die Anzahl der möglichen Ziehungen ist

𝑛!
𝑚1! · 𝑚2! · . . . · 𝑚ℓ!

17 Grundlagen der Wahrscheinlichkeitstheorie
17.1 Wahrscheinlichkeit von Ereignissen
Ein Elementarereignis oder Ergebnis 𝑒𝑖 ist ein Element der Ergebnismenge
Ω = {𝑒1, 𝑒2, . . . , 𝑒𝑛}.
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𝑝𝑖 = 𝑃(𝑒𝑖) bezeichnet die Wahrscheinlichkeit des Elementarereignisses
𝑒𝑖 ∈ Ω.

Summenregel für Elementarereignisse: 𝑝1 + 𝑝2 + . . . + 𝑝𝑛 = 1

Als Ereignis 𝐸 bezeichnet man eine Teilmenge der Ergebnismenge:

𝐸 = {𝑒𝑖1, . . . , 𝑒𝑖𝑘 } ⊂ Ω

Damit ist ein Ereignis 𝐸 ein Element der Potenzmenge von Ω, also 𝐸 ∈ P(Ω).
Eine Menge möglicher Ereignisse bezeichnet man als Ereignisraum E ⊂
P(Ω), wenn

• Ω ∈ E
• Mit 𝐸 ∈ E ist auch 𝐸̄ ∈ E
• Mit 𝐸1, 𝐸2, 𝐸3 . . . ∈ E ist auch 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ . . . ∈ E

Ist 𝐸 = {𝑒𝑖1, 𝑒𝑖2, . . . , 𝑒𝑖𝑘 } ein Ereignis, dann ist die

Wahrscheinlichkeit von 𝐸: 𝑃(𝐸) = 𝑝𝑖1 + 𝑝𝑖2 + . . . + 𝑝𝑖𝑘

Dabei gilt immer 0 ≤ 𝑃(𝐸) ≤ 1

Das Gegenereignis zum Ereignis 𝐸 ist 𝐸̄ = Ω\𝐸 . Es gilt 𝑃(𝐸̄) = 1 − 𝑃(𝐸)
Rechenregeln für Ereignisse 𝐸, 𝐹 ⊂ Ω:

𝑃(𝐸 ∪ 𝐹) = 𝑃(𝐸) + 𝑃(𝐹) − 𝑃(𝐸 ∩ 𝐹) 𝑃(𝐸 \ 𝐹) = 𝑃(𝐸) − 𝑃(𝐸 ∩ 𝐹)

17.2 Laplace-Experimente, Laplace-Formel
Ω = {𝑒1, 𝑒2, . . . , 𝑒𝑛} ist die Ergebnismenge eines Laplace-Experiments,
wenn jedes Elementarereignis die gleiche Wahrscheinlichkeit hat, also

𝑝𝑖 =
1
𝑛

Diese Wahrscheinlichkeit heißt die Laplace-Wahrscheinlichkeit des Laplace-
Experiments.
Für ein Ereignis 𝐸 eines Laplace-Experiments gilt:

Laplace-Formel: 𝑃(𝐸) = Anzahl der Ergebnisse in 𝐸
Anzahl aller Ergebnisse in Ω
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17.3 Baumdiagramm und Pfadregel für mehrstufige Zufallsexpe-
rimente

Mehrstufige Zufallsexperimente lassen sich mit Hilfe von Baumdiagrammen
beschreiben.
Beispiele für ein Baumdiagramm eines zweistufigen Zufallsexperiments:

◦

𝐸2

𝐸23 𝑃(𝐸2 ∩ 𝐸23) = 𝑃(𝐸2) · 𝑃(𝐸23)

𝑃(𝐸23 )
𝐸22 𝑃(𝐸2 ∩ 𝐸22) = 𝑃(𝐸2) · 𝑃(𝐸22)

𝑃(𝐸22)

𝐸21 𝑃(𝐸2 ∩ 𝐸21) = 𝑃(𝐸2) · 𝑃(𝐸21)
𝑃(𝐸21)

𝑃(𝐸
2 )

𝐸1

𝐸13 𝑃(𝐸1 ∩ 𝐸13) = 𝑃(𝐸1) · 𝑃(𝐸13)

𝑃(𝐸13 )
𝐸12 𝑃(𝐸1 ∩ 𝐸12) = 𝑃(𝐸1) · 𝑃(𝐸12)

𝑃(𝐸12)

𝐸11 𝑃(𝐸1 ∩ 𝐸11) = 𝑃(𝐸1) · 𝑃(𝐸11)
𝑃(𝐸11)

𝑃
(𝐸 1)

Rechenregeln im Umgang mit Baumdiagrammen (die Beispiele beziehen
sich auf das obige Baumdiagramm):

Erste Vollständigkeitsregel Die Wahrscheinlichkeit der Äste jeder Stufe
addieren sich zu 1

Pfadmultiplikationsregel Entlang eines Pfades werden die Wahr-
scheinlichkeiten multipliziert

Pfadadditionsregel Die Wahrscheinlichkeit vollständiger Pfade
werden addiert

Zweite Vollständigkeitsregel Die Wahrscheinlichkeiten aller vollständi-
gen Pfade einer Stufe addieren sich zu 1

17.4 Bedingte Wahrscheinlichkeit, Vierfeldertafel, abhängige und
unabhängige Ereignisse

𝑃𝐸 (𝐹) Wahrscheinlichkeit des Ereignisses 𝐹 unter der Bedingung,
dass zuvor das Ereignis 𝐸 eingetreten ist
(Bedingte Wahrscheinlichkeit)
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Darstellung mit Baumdiagramm Darstellung mit Vierfeldertafel

◦

𝐸̄

𝐸̄ ∩ 𝐹̄

𝑃
𝐸 (𝐹)

𝐸̄ ∩ 𝐹𝑃 𝐸̄(𝐹)
𝑃(𝐸)

𝐸

𝐸 ∩ 𝐹̄

𝑃𝐸 (𝐹)

𝐸 ∩ 𝐹𝑃𝐸 (𝐹)

𝑃(𝐸
)

𝐹 𝐹̄

𝐸 𝑃(𝐸 ∩ 𝐹) 𝑃(𝐸 ∩ 𝐹̄) 𝑃(𝐸)

𝐸̄ 𝑃(𝐸̄ ∩ 𝐹) 𝑃(𝐸̄ ∩ 𝐹̄) 𝑃(𝐸̄)

𝑃(𝐹) 𝑃(𝐹̄) 1

𝑃𝐸 (𝐹) =
𝑃(𝐸 ∩ 𝐹)
𝑃(𝐸) 𝑃𝐸 (𝐹̄) =

𝑃(𝐸 ∩ 𝐹̄)
𝑃(𝐸)

𝑃𝐸̄ (𝐹) =
𝑃(𝐸̄ ∩ 𝐹)
𝑃(𝐸̄)

𝑃𝐸̄ (𝐹̄) =
𝑃(𝐸̄ ∩ 𝐹̄)
𝑃(𝐸̄)

Satz von der totalen
Wahrscheinlichkeit

𝑃(𝐹) = 𝑃𝐸 (𝐹) · 𝑃(𝐸) + 𝑃𝐸̄ (𝐹) · 𝑃(𝐸̄)

Satz von Bayes 𝑃𝐹 (𝐸) =
𝑃𝐸 (𝐹) · 𝑃(𝐸)

𝑃(𝐹)

Unabhängigkeit der Er-
eignisse 𝐸 und 𝐹

𝑃(𝐸 ∩ 𝐹) = 𝑃(𝐸) · 𝑃(𝐹)

𝐸, 𝐹 unabhängig ⇐⇒ 𝐸, 𝐹̄ unabhängig

⇐⇒ 𝑃𝐸 (𝐹) = 𝑃𝐸̄ (𝐹) = 𝑃(𝐹) ⇐⇒ 𝑃𝐹 (𝐸) = 𝑃𝐹̄ (𝐸) = 𝑃(𝐸)

17.5 Zufallsvariablen, Erwartungswert, Varianz, Standard-
abweichung

17.5.1 Zufallsvariablen

Eine Zufallsvariable (auch: Zufallsgröße) 𝑋 eines Zufallsexperiments mit
der Ergebnismenge Ω ist eine Abbildung

𝑋 : Ω → R
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Sie ordnet jedem Elementarereignis 𝑒 ∈ Ω eine Zahl 𝑋 (𝑒) ∈ R zu.
Im folgenden sei die Wertemenge von 𝑋 endlich, etwaW𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑟}.
Das ist etwa der Fall, wenn Ω = {𝑒1, 𝑒2, . . . , 𝑒𝑛} selbst endlich ist. Dann ist
insbesondere 𝑟 ≤ 𝑛.
Man schreibt 𝑋−1(𝑥) = {𝑒 ∈ Ω | 𝑋 (𝑒) = 𝑥} für die Menge der Elementarer-
eignisse, die durch 𝑋 auf 𝑥 ∈ R abgebildet werden.
Die Wahrscheinlichkeitsfunktion 𝑃(𝑋) der Zufallsvariablen 𝑋 : Ω → R ist
eine Abbildung

𝑃(𝑋) : R→ [0, 1]

Sie ordnet der Zahl 𝑥 den Wert 𝑃(𝑋 = 𝑥) = 𝑃
(
𝑋−1(𝑥)

)
zu.

Insbesondere ist 𝑃(𝑋 = 𝑥) = 0, wenn 𝑥 ∉W𝑋 , also wenn 𝑥 durch 𝑋 gar nicht
getroffen wird. Es gilt ∑︁

𝑥∈R
𝑃(𝑋 = 𝑥) = 1

Zwei Zufallsvariablen 𝑋 und 𝑌 heißen unabhängig, wenn
𝑃(𝑋 = 𝑥,𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥) · 𝑃(𝑌 = 𝑦) für alle 𝑥, 𝑦 ∈ R

17.5.2 Erwartungswert, Varianz, Standardabweichung

Mit der Wertemenge W𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑟} der Zufallsvariablen 𝑋 gelten
folgende Bezeichnungen:

Erwartungswert von 𝑋 𝐸 (𝑋) =
𝑟∑︁
𝑖=1

𝑥𝑖 · 𝑃(𝑋 = 𝑥𝑖)

Varianz von 𝑋 𝑉 (𝑋) =
𝑟∑︁
𝑖=1

(𝑥𝑖 − 𝐸 (𝑋))2 · 𝑃(𝑋 = 𝑥𝑖)

Standardabweichung von 𝑋 𝜎(𝑋) =
√︁
𝑉 (𝑋)

Beziehung zwischen Varianz und Mittelwert:

𝑉 (𝑋) = 𝐸 (𝑋2) − 𝐸 (𝑋)2
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18 Spezielle Wahrscheinlichkeitsverteilungen
18.1 Bernoulli-Experimente, Bernoulli-Kette und Binomialvertei-
lung

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit einem zweielemen-
tigen Ergebnisraum Ω = {𝑝𝑜𝑠, 𝑛𝑒𝑔} mit 𝑃(𝑝𝑜𝑠) = 𝑝, 𝑃(𝑛𝑒𝑔) = 𝑞 = 1 − 𝑝.
Führt man ein Bernoulli-Experiment 𝑛-mal durch, so erhält man eine Bernoulli-
Kette der Länge 𝑛.
Dies liefert die Zufallsvariable 𝑋𝐵𝑛,𝑝 :

𝑋𝐵𝑛,𝑝 = Anzahl des Ergebnisses 𝑝𝑜𝑠 in der Bernoulli-Kette der Länge 𝑛

Die Zufallsvariable 𝑋𝐵𝑛,𝑝 nimmt die Werte 0, 1, . . . , 𝑛 an und man schreibt
𝑃(𝑋𝐵𝑛,𝑝 = 𝑘) = 𝐵𝑛,𝑝 (𝑘). Für diese Wahrscheinlichkeitsfunktion gilt:

𝐵𝑛,𝑝 (𝑘) =
(
𝑛

𝑘

)
𝑝𝑘𝑞𝑛−𝑘

𝐵𝑛,𝑝 heißt Binomialverteilung.
Ihr Erwartungswert, ihre Varianz und ihre Standardabweichung sind:

𝐸
(
𝑋𝐵𝑛,𝑝

)
= 𝑛𝑝 𝑉

(
𝑋𝐵𝑛,𝑝

)
= 𝑛𝑝𝑞 𝑆

(
𝑋𝐵𝑛,𝑝

)
=
√
𝑛𝑝𝑞

18.2 Normalverteilung und Standardnormalverteilung

Eine Zufallsvariable 𝑋𝑁𝜇,𝜎 mit Werten in R heißt (𝜇, 𝜎)-normalverteilt,
wenn

𝑃(𝑋𝑁𝜇,𝜎 ≤ 𝑥) = Φ𝜇,𝜎 (𝑥) =
1

√
2𝜋 𝜎

∫ 𝑥

−∞
𝑒
− (𝑡−𝜇)2

2 𝜎2 𝑑𝑡
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Der Integrand 𝜙𝜇,𝜎 (𝑥) heißt Dichte der (𝜇, 𝜎)-Normalverteilung Φ𝜇,𝜎 (𝑥)

𝜙𝜇,𝜎 (𝑥) =
1

√
2𝜋 𝜎

𝑒
− (𝑥−𝜇)2

2 𝜎2

Erwartungswert, Varianz und Standardabweichung der (𝜇, 𝜎)-Normal-
verteilung:

𝐸
(
𝑋𝑁𝜇,𝜎

)
= 𝜇 𝑉

(
𝑋𝑁𝜇,𝜎

)
= 𝜎2 𝑆

(
𝑋𝑁𝜇,𝜎

)
= 𝜎

Die (1, 0)-Normalverteilung heißt Standardnormalverteilung:

Φ(𝑥) = Φ1,0(𝑥) 𝜙(𝑥) = 𝜙1,0(𝑥)

Es gilt

Φ𝜇,𝜎 (𝑥) = Φ

(𝑥 − 𝜇
𝜎

)
𝜙𝜇,𝜎 (𝑥) =

1
𝜎
𝜙

(𝑥 − 𝜇
𝜎

)

Eigenschaften der (𝜇, 𝜎)-Normalverteilung

𝑃(𝑋𝑁𝜇,𝜎 ≥ 𝜇 + 𝑅) = 𝑃(𝑋𝑁𝜇,𝜎 ≤ 𝜇 − 𝑅) = Φ𝜇,𝜎 (𝜇 − 𝑅)

𝑃(𝑋𝑁𝜇,𝜎 ≤ 𝜇 + 𝑅) = 𝑃(𝑋𝑁𝜇,𝜎 ≥ 𝜇 − 𝑅) = 1 −Φ𝜇,𝜎 (𝜇 − 𝑅)

𝑃(𝑋𝑁𝜇,𝜎 ≤ 𝜇) = Φ𝜇,𝜎 (𝜇) = 1
2

𝑃( |𝑋𝑁𝜇,𝜎 − 𝜇 | ≤ 𝑅) = 𝑃(𝜇 − 𝑅 ≤ 𝑋𝑁𝜇,𝜎 ≤ 𝜇 + 𝑅) = 1 − 2Φ𝜇,𝜎 (𝜇 − 𝑅)
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Ist 𝑋 eine (𝜇𝑋 , 𝜎𝑋)-normalverteilte und 𝑌 eine (𝜇𝑌 , 𝜎𝑌 )-normalverteilte
Zufallsvariable und sind 𝑋 und 𝑌 unabhängig, dann sind

𝑍 = 𝑎𝑋 + 𝑏
(
𝑎𝜇𝑋 + 𝑏, 𝑎𝜎𝑋

)
-normalverteilt

und

𝑍 = 𝑋 + 𝑌
(
𝜇𝑋 + 𝜇𝑌 ,

√︃
𝜎2
𝑋
+ 𝜎2

𝑌

)
-normalverteilt.

18.3 Wichtige Beziehung zwischen Binomial- und Normalvertei-
lung

Die (𝑛, 𝑝)-Binomialverteilung, lässt sich durch eine (𝜇, 𝜎)-Normalverteilung
annähern, wenn mit 𝑞 = 𝑝 − 1 die

Moivre-Bedingung 𝑛𝑝𝑞 > 9

erfüllt ist.
In diesem Fall ist 𝜇 = 𝑛𝑝 und𝜎 =

√
𝑛𝑝𝑞 zu wählen, so dass beide Verteilungen

den gleichen Erwartungswert und die gleiche Standartabweichung haben; z. B.
𝑛 = 150, 𝑝 = 1

6 , also 𝜇 = 𝑛𝑝 = 25 und 𝜎 =
√
𝑛𝑝𝑞 ≈ 4,6:

Näherungsformel:

𝑃
(
𝑘1 ≤ 𝑋𝐵𝑛,𝑝 ≤ 𝑘2

)
≈ 𝑃

(
𝑘1 − 0,5 ≤ 𝑋𝑁𝜇,𝜎 ≤ 𝑘2 + 0,5)

also
𝑘2∑︁
𝑘=𝑘1

𝐵𝑛,𝑝 (𝑘) ≈ Φ𝜇,𝜎 (𝑘2 + 0,5) −Φ𝜇,𝜎 (𝑘1 − 0,5)

Spezialfälle der Näherungsformel:
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• 𝑃
(
𝑋𝐵𝑛,𝑝 = 𝑘

)
≈ Φ𝜇,𝜎 (𝑘 + 0,5) −Φ𝜇,𝜎 (𝑘 − 0,5)

• 𝑃
(
𝑋𝐵𝑛,𝑝 ≤ 𝑘

)
≈ Φ𝜇,𝜎 (𝑘 + 0,5) −Φ𝜇,𝜎 (−0,5)

• 𝑃
(
𝑋𝐵𝑛,𝑝 ≥ 𝑘

)
≈ Φ𝜇,𝜎 (𝑛 + 0,5) −Φ𝜇,𝜎 (𝑘 − 0,5)

19 Hypothesentests
19.1 Nullhypothese, Gegenhypothese und Fehlerarten
𝐻0 bezeichnet in diesem Abschnitt stets die Nullhypothese und 𝐻1 die
Gegenhypothese.

Wirklichkeit

𝐻0 wahr 𝐻1 wahr
𝐻0 wird abgelehnt

𝐻1 wird angenommen
Fehler 1. Art
𝛼-Fehler richtige Entscheidung

𝐻0 wird angenommen
𝐻1 wird abgelehnt richtige Entscheidung Fehler 2. Art

𝛽-Fehler

In den folgenden Hypothesentests ist

• stets der Annahmebereich (auch Konfidenzbereich) gesucht,
• wobei eine gewisse Irrtumswahrscheinlichkeit (auch Signifikanzniveau)
𝛼 vorgegeben ist.

Wird die Wahrscheinlichkeit durch die Normalverteilung angenähert, dann
kann man die Breite des (symmetrischen) Annahmebereichs in Vielfachen
ℓ ·𝜎 der Standardabweichung angeben.
Dabei gelten mit

𝑃
(
𝜇 − ℓ ·𝜎 ≤ 𝑋𝑁𝜇,𝜎 ≤ 𝜇 + ℓ ·𝜎

)
= 1 − 𝛼ℓ

also

Φ𝜇,𝜎 (𝜇 − ℓ 𝜎) =
𝛼ℓ

2
oder Φ1,0(−ℓ) =

𝛼ℓ

2
oder Φ1,0(ℓ) = 1 − 𝛼ℓ

2
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folgende nützliche Beziehungen:

ℓ 1 − 𝛼ℓ 𝛼ℓ

1 0,683 (68,3%) 0,317 (31,7%)

2 0,954 (95,4%) 0,046 (4,6%)

3 0,997 (99,7%) 0,003 (0,3%)

ℓ 1 − 𝛼ℓ 𝛼ℓ

1,64 0,900 (90%) 0,100 (10%)

1,96 0,950 (95%) 0,050 (5%)

2,58 0,990 (99%) 0,010 (1%)

3,29 0,999 (99,9%) 0,001 (0,1%)

19.2 Hypothesentests

19.2.1 Linksseitiger Hypothesentest (𝐻0 : 𝑝 ≥ 𝑝0, 𝐻1 : 𝑝 < 𝑝0)

Nullhypothese Gegenhypothese Signifikanz
𝐻0 : 𝑝 ≥ 𝑝0 𝐻1 : 𝑝 < 𝑝0 𝛼

Annahmebereich:

𝑋 ≥ 𝑔𝑙 mit linker Grenze 𝑔𝑙 aus 𝑃𝑝0 (𝑋 < 𝑔𝑙) = 𝛼

Entscheidungsregel für die Stichprobe 𝑋0:

𝐻0 wird abgelehnt, wenn 𝑋0 < 𝑔𝑙

19.2.2 Rechtsseitiger Hypothesentest (𝐻0 : 𝑝 ≤ 𝑝0, 𝐻1 : 𝑝 > 𝑝0)

Nullhypothese Gegenhypothese Signifikanz
𝐻0 : 𝑝 ≤ 𝑝0 𝐻1 : 𝑝 > 𝑝0 𝛼

Annahmebereich:

𝑋 ≤ 𝑔𝑟 mit rechter Grenze 𝑔𝑟 aus 𝑃𝑝0 (𝑋 > 𝑔𝑟) = 𝛼

Entscheidungsregel für die Stichprobe 𝑋0:

𝐻0 wird abgelehnt, wenn 𝑋0 > 𝑔𝑟
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19.2.3 Beidseitiger Hypothesentest (𝐻0 : 𝑝 = 𝑝0, 𝐻1 : 𝑝 ≠ 𝑝0)

Nullhypothese Gegenhypothese Signifikanz
𝐻0 : 𝑝 = 𝑝0 𝐻1 : 𝑝 ≠ 𝑝0 𝛼

Annahmebereich:

𝑔𝑙 ≤ 𝑋 ≤ 𝑔𝑟 mit 𝑔𝑙 , 𝑔𝑟 aus 𝑃𝑝0 (𝑋 > 𝑔𝑟) = 𝛼
2 und 𝑃𝑝0 (𝑋 < 𝑔𝑙) = 𝛼

2

Entscheidungsregel für den Stichprobenwert 𝑋0:

𝐻0 wird abgelehnt, wenn 𝑋0 < 𝑔𝑙 oder 𝑋0 > 𝑔𝑟

19.3 Beispiele: Annahmebereiche für spezielle Zufallsvariablen
Im Folgenden sind 𝑋, 𝑋1, . . . , 𝑋𝑛 jeweils (𝑛, 𝑝)-binomialverteilte, unabhängi-
ge Zufallsvariablen, die durch die gleiche Normalverteilung mit 𝜇𝑋 = 𝑛𝑝 und
𝜎𝑋 =

√︁
𝑛𝑝(1 − 𝑝) angenähert werden.

Dann lassen sich das Stichprobenmittel 𝑋 =
1
𝑛
(𝑋1 + . . . + 𝑋𝑛) und die

relative Häufigkeit ℎ =
1
𝑛
𝑋 ebenfalls durch Normalverteilungen annähern.

Deren Erwartungswerte und Standardabweichungen sind:

𝜇
𝑋
= 𝜇𝑋 = 𝑛𝑝 , 𝜎

𝑋
=
𝜎𝑋√
𝑛
=

√︁
𝑝(1 − 𝑝)

und 𝜇ℎ =
𝜇𝑋

𝑛
= 𝑝 , 𝜎ℎ =

𝜎𝑋

𝑛
=

√︂
𝑝(1 − 𝑝)

𝑛
.

Damit lassen sich (für einen beidseitigen Test) folgende symmetrische Annah-
mebereiche angeben:

für 𝑋 : 𝑃

(
|𝑋 − 𝑛𝑝 | ≤ ℓ ·

√︁
𝑛𝑝(1 − 𝑝)

)
≤ 1 − 𝛼 ,

für 𝑋 : 𝑃

(
|𝑋 − 𝑛𝑝 | ≤ ℓ ·

√︁
𝑝(1 − 𝑝)

)
≤ 1 − 𝛼 ,

für ℎ : 𝑃

(
|ℎ − 𝑝 | ≤ ℓ ·

√︂
𝑝(1 − 𝑝)

𝑛

)
≤ 1 − 𝛼 .

Dabei berechnet sich ℓ aus

Φ(1,0) (ℓ) = 1 − 𝛼
2
.
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20 Zahlentheorie
20.1 Teilbarkeit, Primzahlen und Faktorisierung
In diesem Abschnitt sind alle Zahlen ganze Zahlen.

Teilbarkeit (𝑎 ≠ 0) 𝑛 teilt 𝑎⇐⇒ 𝑛 | 𝑎
⇐⇒ Es gibt eine Zahl 𝑘 , sodass 𝑎 = 𝑘 · 𝑛

Teilt 𝑛 die Zahl 𝑎, dann heißt 𝑛 ein Teiler von 𝑎

T (𝑎) bezeichnet die Teilermenge von 𝑎

ggT ggT(𝑎, 𝑏) = größter gemeinsamer Teiler der Zah-
len 𝑎, 𝑏

ggT(𝑎, 𝑏) = max
(
T (𝑎) ∩ T (𝑏)

)
Teilerfremdheit 𝑎, 𝑏 heißen teilerfremd, wenn ggT(𝑎, 𝑏) = 1

D. h. 𝑎 und 𝑏 haben keinen gemeinsamen Teiler
außer 1

Primzahl 𝑝 > 1 heißt Primzahl, wenn 𝑝 nur die Teiler 1 und
𝑝 hat, also wenn T (𝑝) = {1, 𝑝}

Primfaktor-
zerlegung

Jede Zahl 𝑎 > 0 besitzt eine eindeutige Zerlegung
in Primfaktoren, d. h. es gibt (nicht unbedingt ver-
schiedene) Primzahlen 𝑝1, 𝑝2, . . . , 𝑝𝑟 , sodass

𝑎 = 𝑝1 · 𝑝2 · . . . · 𝑝𝑟

20.2 Reste, Euklidischer Algorithmus

Rest Sind 𝑎 und 𝑛 > 0 Zahlen, dann gibt es eine Zahl 𝑘
und eine Zahl 𝑟 ∈ {0, 1, . . . , 𝑛 − 1} so dass

𝑎 = 𝑘 · 𝑛 + 𝑟

𝑟 heißt Rest von 𝑎 beim Teilen durch 𝑛
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Euklidischer
Algorithmus
für ggT(𝑎, 𝑏)
𝑏 > 𝑎 > 0

𝑟−1 = 𝑏, 𝑟0 = 𝑎

Für 𝑖 ≥ 1: falls 𝑟𝑖−1 ≠ 0 bestimme 𝑘𝑖 und 𝑟𝑖, sodass
𝑟𝑖−2 = 𝑘𝑖 · 𝑟𝑖−1 + 𝑟𝑖

Der Algorithmus bricht stets ab, da die Reste in
jedem Schritt kleiner werden.

Hat man 𝑚 Schritte benötigt, d. h. 𝑟𝑚 = 0, so ist
ggT(𝑎, 𝑏) der Rest des vorletzten Schritts, also

ggT(𝑎, 𝑏) = 𝑟𝑚−1

erweiterter
euklidischer
Algorithmus

Zu zwei Zahlen 𝑎 und 𝑏 gibt es Zahlen 𝑘, ℓ, so dass
𝑘 · 𝑎 + ℓ · 𝑏 = ggT(𝑎, 𝑏)

Man erhält diese Darstellung von ggT(𝑎, 𝑏) etwa, indem man die Gleichungen
aus dem Euklidischem Algorithmus in jedem Schritt auflöst und die zwei
letzten nutzt, um sie im folgenden Schritt einzusetzen.

Beispiel: 𝑎 = 460, 𝑏 = 158:

460 = 2 · 158 + 144 →144 = 1 · 460 − 2 · 158

158 = 1 · 144 + 14 → 14 = 1 · 158 − 1 · 144

= 1 · 158 − 1 · (1 · 460 − 2 · 158)

= 3 · 158 − 1 · 460

144 = 10 · 14 + 4 → 4 = 144 − 10 · 14

= 1 · (1 · 490 − 2 · 158) − 10 · (3 · 158 − 1 · 460)

= 11 · 460 − 32 · 158

14 = 3 · 4 + 2 → 2 = 14 − 3 · 4

= (3 · 158 − 1 · 460) − 3 · (11 · 460 − 32 · 158)

= 99 · 158 − 34 · 460

4 = 2 · 2

Das gibt:

ggT(460, 158) = 2 und 2 = 99 · 158 − 34 · 460 .

72



20.3 Restklassen und Restklassenrechnung
Haben zwei Zahlen beim Teilen durch die Zahl 𝑛 > 1 den gleichen Rest, so
sagt man

𝑎 und 𝑏 gehören zur gleichen Restklasse modulo 𝑛

oder

𝑎 und 𝑏 sind kongruent modulo 𝑛

und man schreibt
𝑎 ≡ 𝑏 mod 𝑛

In diesem Fall ist 𝑎 = 𝑘 · 𝑛 + 𝑟 und 𝑏 = ℓ · 𝑛 + 𝑟 für den gleichen Rest 𝑟 ∈
{0, 1, . . . , 𝑛−1}. Insbesondere ist dann 𝑎 ≡ 𝑏 ≡ 𝑟 mod 𝑛 und 𝑎−𝑏 ≡ 0 mod 𝑛.

Für die Restklassenmenge schreibt man Z𝑛 = {0, 1, . . . , 𝑛 − 1} .

Rechenregeln für das Rechnen in der Restklassenmenge Z𝑛:

𝑎 mod 𝑛 ± 𝑏 mod 𝑛 = (𝑎 ± 𝑏) mod 𝑛

𝑎 mod 𝑛 · 𝑏 mod 𝑛 = (𝑎 · 𝑏) mod 𝑛

𝑎, 𝑏 sind zueinander multiplikativ invers modulo 𝑛
⇐⇒ 𝑎 · 𝑏 ≡ 1 mod 𝑛

Die multiplikativen Inversen in Z𝑛:

Ist 𝑎 . 0 mod 𝑛, dann gibt es ein multiplikatives Inverses
modulo 𝑛, wenn ggT(𝑎, 𝑛) = 1, d. h., wenn 𝑎 und 𝑛 nur
den gemeinsamen Teiler 1 besitzen.

Spezialfall:4

Ist 𝑝 eine Primzahl, dann findet man zu allen 𝑎 mit 𝑝 ∤ 𝑎
ein multiplikatives Inverses.

4𝑏 ∤ 𝑎 bedeutet: 𝑏 ist kein Teiler von 𝑎.
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20.4 Eulersche 𝜑-Funktion und der Satz von Euler-Fermat

Eulersche 𝜑-Funktion
𝜑(𝑛) = Anzahl der Zahlen in {1, . . . , 𝑛 − 1},

die mit 𝑛 nur den gemeinsamen Tei-
ler 1 haben.

Rechenregeln für die Eulersche 𝜑-Funktion:

𝜑(𝑝) = 𝑝 − 1 für eine Primzahl 𝑝

𝜑(𝑝𝑘) = 𝑝𝑘−1(𝑝 − 1) für eine Primzahl 𝑝

𝜑(𝑚 · 𝑛) = 𝜑(𝑚) · 𝜑(𝑛) wenn ggT(𝑚, 𝑛) = 1

Besitzt 𝑛 die Primfaktorzerlegung 𝑛 = 𝑝𝛼1
1 · 𝑝𝛼2

2 · . . . · 𝑝𝛼𝑟𝑟 , so gilt:

𝜑(𝑛) = 𝑛
(
1 − 1

𝑝1

)
·
(
1 − 1

𝑝2

)
· . . . ·

(
1 − 1

𝑝𝑟

)
Satz von Euler-Fermat

𝑎𝜑(𝑛) ≡ 1 mod 𝑛 wenn ggT(𝑎, 𝑛) = 1

Spezialfall:

𝑎𝑝−1 ≡ 1 mod 𝑝 wenn 𝑝 prim und 𝑝 ∤ 𝑎

20.5 Anwendung: Die RSA-Verschlüsselung
Die RSA-Verschlüsselung ist ein sogenanntes asymmetrisches Verschlüs-
selungsverfahren, da zum Verschlüsseln und Entschlüsseln einer Nachricht
unterschiedliche Schlüssel verwendet werden.
Die RSA-Verschlüsselung benötigt drei Parameter 𝑁, 𝑒, 𝑑 ∈ Z mit folgenden
Bedingungen:

Wahl der Zahlen 𝑁 𝑁 = 𝑝 · 𝑞 für zwei Primzahlen 𝑝, 𝑞

𝑒 ggT(𝜑(𝑁), 𝑒) = 1

𝑑 𝑒 · 𝑑 ≡ 1 mod 𝜑(𝑁)
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(𝑒, 𝑁) heißt öffentlicher Schüssel (𝑑, 𝑁) heißt geheimer Schüssel

Durchführen der RSA-Verschlüsselung

Originaltext Verschlüsselter Text Entschlüsselter Text
𝐴 𝐵 𝐴

𝐴𝑒 ≡ 𝐵 mod 𝑁 𝐵𝑑 ≡ 𝐴 mod 𝑁

Zusammenfassender Fahrplan für die RSA-Verschlüsselung

Schritt 1: Man wählt zwei Primzahlen 𝑝 und 𝑞 und berechnet damit
𝑁 = 𝑝 · 𝑞.

Schritt 2: Man berechnet 𝜑(𝑁) = (𝑝 − 1) (𝑞 − 1) und bestimmt eine
Zahl 𝑒 mit ggT

(
𝑒, 𝜑(𝑁)

)
= 1.

−→ öffentlicher Schlüssel (𝑒, 𝑁).

Schritt 3: Man berechnet 𝑑 aus dem Faktor vor 𝑒 im erweiterten eukli-
dischen Algorithmus für 𝑒 und 𝜑(𝑁): 𝑘 · 𝑒 + ℓ · 𝜑(𝑁) = 1.
Ist 0 < 𝑘 < 𝜑(𝑁), dann wählt man 𝑑 = 𝑘 , andernfalls
addiert/subtrahiert man 𝜑(𝑁) so oft zu/von 𝑘 , bis der Wert
die gewünschte Eigenschaft hat: das ist dann 𝑑.
−→ geheimer Schlüssel (𝑑, 𝑁).

Schritt 4: Man verschlüsselt eine Originalnachricht 𝐴 zur codierten
Nachricht 𝐵, indem man 𝐴𝑒 ≡ 𝐵 mod 𝑁 berechnet.

Schritt 5: Man entschlüsselt eine codierte Nachricht 𝐵 zur Original-
nachricht 𝐴, indem man 𝐵𝑑 ≡ 𝐴 mod 𝑁 berechnet.

Schritt 5 des Fahrplans klappt wegen 𝐵𝑑 ≡ (𝐴𝑒)𝑑 ≡ 𝐴𝑒·𝑑 ≡ 𝐴 mod 𝑁

21 Matrizen und Determinanten
21.1 Matrizen
Eine Matrix ist ein rechteckiges Schema von Zahlen, d. h. die Einträge der
Matrix sind in Zeilen und Spalten angeordnet.
Eine Matrix mit 𝑚 Zeilen und 𝑛 Spalten heißt 𝑚 × 𝑛-Matrix. Ist 𝑚 = 𝑛 so
spricht man von einer quadratischen Matrix.
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Spezialall:

Ein Vektor im Raum, z. B. ©­«
4
−1
2

ª®¬, kann als 3 × 1-Matrix interpretiert werden.

Die einzelnen Komponenten einer Matrix werden mit der Zeilen- und Spalten-
zahl nummeriert. Eine 𝑚 × 𝑛-Matrix 𝐵 hat dann 𝑚 · 𝑛 Komponenten 𝑏𝑖 𝑗 mit
𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛 und man schreibt 𝐵 =

(
𝑏𝑖 𝑗 ).

Beispiel:

𝐵 =

(
2 −1 3
4 7 −8

)
=

(
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23

)
=

(
𝑏𝑖 𝑗

)
also

𝑏11 = 2, 𝑏12 = −1, 𝑏13 = 3, 𝑏21 = 4, 𝑏22 = 7, 𝑏23 = −8

Die 𝑛 × 𝑛-Einheitsmatrix 𝐸𝑛 ist die Matrix, bei der die Einträge auf der
Diagonalen alle Eins sind und alle weiteren Einträge Null, z. B.

𝐸3 =
©­«
1 0 0
0 1 0
0 0 1

ª®¬ 𝐸2 =

(
1 0
0 1

)
21.2 Matrizenrechnung I: Addition, Subtraktion, skalare Multipli-
kation

Addition und Subtraktion
Matrizen mit der gleicher Spalten- und Zeilenzahl kann man addieren und
subtrahieren. Dies geschieht komponentenweise:

𝐴 =
(
𝑎𝑖 𝑗

)
, 𝐵 =

(
𝑏𝑖 𝑗

)
=⇒ 𝐶 = 𝐴 ± 𝐵 =

(
𝑐𝑖 𝑗

)
mit 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 ± 𝑏𝑖 𝑗

Skalare Multiplikation
Matrizen kann man mit einer Zahl multiplizieren. Dies geschieht komponen-
tenweise:

𝐴 =
(
𝑎𝑖 𝑗

)
, 𝛼 ∈ R =⇒ 𝐵 = 𝛼 · 𝐴 =

(
𝑏𝑖 𝑗

)
mit 𝑏𝑖 𝑗 = 𝛼𝑎𝑖 𝑗

21.3 Matrizenrechnung II: Matrixmultiplikation
Matrixmultiplikation
Zwei Matrizen lassen sich multiplizieren, wenn die Spaltenzahl des ersten
Faktors mit der Zeilenzahl des zweiten Faktors übereinstimmt: Ist 𝐴 =
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(
𝑎𝑖 𝑗

)
𝑖=1,...,𝑚; 𝑗=1,...,𝑛 eine 𝑚 × 𝑛-Matrix und 𝐵 =

(
𝑏𝑖 𝑗

)
𝑖=1,...,𝑛; 𝑗=1,...,𝑘 eine 𝑛 × 𝑘-

Matrix, dann ist 𝐶 = 𝐴 · 𝐵 =
(
𝑐𝑖 𝑗

)
𝑖=1,...,𝑚; 𝑗=1,...,𝑘 eine 𝑚 × 𝑘-Matrix mit

𝑐𝑖 𝑗 = 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + . . . + 𝑎𝑖𝑛𝑏𝑛 𝑗 =
𝑛∑︁
ℓ=1

𝑎𝑖ℓ𝑏ℓ 𝑗

Visualisierung:

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

©­­­­«
ª®®®®¬

𝐴 : 2× 3-Matrix

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

©­­­­­­­­­«

ª®®®®®®®®®¬

𝐵 : 3× 4-Matrix

𝑐11 𝑐12 𝑐13 𝑐14

𝑐21 𝑐22 𝑐23 𝑐24

©­­­­«
ª®®®®¬

𝑎 21
· 𝑏 12

𝑎 22
· 𝑏 22

𝑎 23
· 𝑏 32

+
+

𝐶 = 𝐴 · 𝐵 : 2× 4-Matrix

21.4 Determinanten kleiner Matrizen
Die Determinante ordnet einer quadratischen Matrix 𝐴 eindeutig eine Zahl
det(𝐴) zu.
Die Determinante einer 2 × 2-Matrix

det
(
𝑎11 𝑎12
𝑎21 𝑎22

)
= 𝑎11 · 𝑎22 − 𝑎12 · 𝑎21

Die Determinante einer 3 × 3-Matrix

Die Determinante einer 3 × 3-Matrix ©­«
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

ª®¬ kann man mit der

Sarrus-Regel berechnen:
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Dazu schreibt man die ersten beiden Spalten der Matrix neu rechts neben die
Matrix. Dann berechnet man die Produkte der Diagonalen, um die Ergebnisse
anschließend nach folgendem Schema zu addieren oder zu subtrahieren:

𝑎11 𝑎12 𝑎13 𝑎11 𝑎12

𝑎21 𝑎22 𝑎23 𝑎21 𝑎22

𝑎31 𝑎32 𝑎33 𝑎31 𝑎32

+ + +

− − −

det ©­«
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

ª®¬ = 𝑎11 · 𝑎22 · 𝑎33 + 𝑎12 · 𝑎23 · 𝑎31 + 𝑎13 · 𝑎21 · 𝑎32

− 𝑎11 · 𝑎23 · 𝑎32 − 𝑎12 · 𝑎21 · 𝑎33 − 𝑎13 · 𝑎22 · 𝑎31

Eigenschaften der Determinante:

• Besitzt eine Matrix 𝐴 eine Zeile oder eine Spalte, die nur Nullen enthält,
dann ist det(𝐴) = 0.

• Besitzt eine Matrix 𝐴 zwei gleiche Zeilen oder zwei gleiche Spalten, dann
ist det(𝐴) = 0.

• Die Determinante entscheidet, ob eine Matrix invertierbar ist, oder nicht,
siehe Abschnitt 22.1:

𝐴 ist invertierbar ⇐⇒ det(𝐴) ≠ 0

22 Lineare und affine Abbildungen mit Hilfe von Matri-
zen

22.1 Grundlegende Eigenschaften und inverse Matrix

Eine 𝑛 × 𝑚-Matrix 𝐴 ordnet jedem Vektor ®𝑥 ∈ R𝑚 einen Vektor 𝐴 · ®𝑥 ∈ R𝑛

zu.
𝐴 definiert somit eine lineare Abbildung, d. h. 𝐴 : R𝑚 → R𝑛 mit

𝐴 · (®𝑥 + ®𝑦) = 𝐴 · ®𝑥 + 𝐴 · ®𝑦 und 𝐴 · (𝛼 · ®𝑥) = 𝛼 · (𝐴 · ®𝑥)

Eine Matrix 𝐴 kann höchstens dann eine bĳektive lineare Abbildung beschrei-
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ben, wenn 𝐴 quadratisch ist, also 𝑚 = 𝑛.

Ist 𝐴 quadratisch und die zugehörige lineare Abbildung bĳektiv, dann heißt 𝐴
invertierbar. In diesem Fall gibt es die inverse lineare Abbildung und für ihre
zugehörige Matrix schreibt man 𝐴−1. Diese Matrix heißt die inverse Matrix
zu 𝐴.

Ist 𝐴 eine invertierbare 𝑛 × 𝑛-Matrix, dann ist auch 𝐴−1 invertierbar mit
(𝐴−1)−1 = 𝐴. Es gilt

𝐴 · 𝐴−1 = 𝐴−1 · 𝐴 = 𝐸𝑛

Die zu 𝐴 inverse Matrix 𝐴−1 lässt sich mit Hilfe des (erweiterten) Gauß-
Algorithmus bestimmen:

1. Man schreibt 𝐴 und die Einheitsmatrix 𝐸𝑛 nebeneinander:

( 𝐴 | 𝐸𝑛 )
2. Man führt Gauß-Schritte an 𝐴 so lange durch, bis Dreiecksform

erreicht ist. Gleichzeitig führt man die selben Schritte an der Ein-
heitsmatrix durch. Das gibt dann

( | 𝐵 )
3. Man führt so lange weitere Gaußschritte an der Dreiecksmatrix

durch, bis diese in die Einheitsmatrix umgeformt ist. Gleichzeitig
führt man die selben Schritte an der rechten Matrix 𝐵 durch. Das
gibt dann

( 𝐸𝑛 | 𝐴−1 )
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Beispiel:
𝐴 = 𝐸3 =

𝐼 4 2 1 1 0 0
𝐼 𝐼 2 2 1 0 1 0
𝐼 𝐼 𝐼 1 1 0 0 0 1
𝐼 1 1 0 0 0 1 𝐼 𝐼 𝐼

𝐼 𝐼 0 −2 −1 1 −2 0 𝐼 − 2 · 𝐼 𝐼
𝐼 𝐼 𝐼 0 0 1 0 1 −2 𝐼 𝐼 − 2 · 𝐼 𝐼 𝐼
𝐼 1 1 0 1 0 0
𝐼 𝐼 0 −2 0 1 −1 −2 𝐼 𝐼 + 𝐼 𝐼 𝐼
𝐼 𝐼 𝐼 0 0 1 0 1 −2
𝐼 1 0 0 1

2 −1
2 0 𝐼 + 1

2 · 𝐼 𝐼
𝐼 𝐼 0 1 0 −1

2
1
2 1 −1

2 · 𝐼 𝐼
𝐼 𝐼 𝐼 0 0 1 0 1 −2

= 𝐸3 = 𝐴−1

Mit Hilfe der inversen Matrix lassen sich lineare Gleichungssysteme lösen:

Ist 𝐴 invertierbar, dann hat das LGS 𝐴 · ®𝑥 = ®𝑏 für jede rechte Seite ®𝑏 genau
eine Lösung, nämlich ®𝑥 = 𝐴−1 · ®𝑏.

22.2 Eigenwerte und Eigenvektoren

Ist 𝐴 eine quadratische 𝑛×𝑛-Matrix, dann heißt der Vektor ®𝑣 ∈ R𝑛 Eigenvektor
und die Zahl 𝜆 Eigenwert von 𝐴, wenn

𝐴 · ®𝑣 = 𝜆 · ®𝑣

Ist 𝐴 =

(
𝑎11 𝑎12
𝑎21 𝑎22

)
eine 2 × 2-Matrix, dann erhält man die Eigenwerte als

Lösungen der quadratischen Gleichung

𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0

Eine 2 × 2-Matrix hat höchstens 2 unterschiedliche Eigenwerte.

Ist 𝜆 ein Eigenwert von 𝐴, dann erhält man die Eigenvektoren als Lösungen
des LGS

(𝐴 − 𝜆 · 𝐸𝑛) · ®𝑥 = ®0
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Beispiele:

• Sind ®𝑣 und ®𝑤 Eigenvektoren zum selben Eigenwert 𝜆, dann ist auch
𝛼 · ®𝑣 + 𝛽 · ®𝑤 für 𝛼, 𝛽 ∈ R ein Eigenvektor zu 𝜆.

• Die Einträge einer Diagonalmatrix sind die Eigenwerte dieser Matrix.
• Die Einträge der Diagonale einer Dreiecksmatrix sind die Eigenwerte

dieser Matrix.
• 𝛼 ist der einzige Eigenwert der speziellen Diagonalmatrix 𝛼 · 𝐸𝑛 und alle

Vektoren sind Eigenvektoren.

22.3 Streckung, Drehung, Spiegelung und Scherung im R2

Streckung um den Faktor 𝛼 mittels
Streckmatrix 𝐴𝛼

𝐴𝛼 =

(
𝛼 0
0 𝛼

)
Drehung um den Winkel 𝜑 gegen den
Uhrzeigersinn mittels Drehmatrix 𝐷𝜑

𝐷𝜑 =

(
cos(𝜑) − sin(𝜑)
sin(𝜑) cos(𝜑)

)

Spiegelung an der Ursprungsgeraden

mit Richtungsvektor ®𝑣 =
(
𝑣1
𝑣2

)
mittels

Spiegelungsmatrix 𝑆®𝑣

𝑆®𝑣 =
©­­«
1 − 2𝑣2

2
𝑣2

1+𝑣
2
2

2𝑣1𝑣2
𝑣2

1+𝑣
2
2

2𝑣1𝑣2
𝑣2

1+𝑣
2
2

1 − 2𝑣2
1

𝑣2
1+𝑣

2
2

ª®®¬
Scherung entlang der 𝑥-Achse (oder 𝑦-
Achse) mit Scherfaktor 𝑎 ≠ 0 mittels
Schermatrix 𝑇𝑥,𝑎 (oder 𝑇𝑦,𝑎)

𝑇𝑥,𝑎 =

(
1 𝑎

0 1

)
, 𝑇𝑦,𝑎 =

(
1 0
𝑎 1

)

Eigenwerte dieser Abbildungen:

• 𝐴𝛼 = 𝛼 · 𝐸2 hat den Eigenwert 𝛼 und alle Vektoren sind Eigenvektoren.
• 𝐷𝜑 hat nur (reelle) Eigenwerte, wenn 𝜑 = 0 mit 𝐷0 = 𝐸2 oder 𝜑 = 180◦

mit 𝐷180◦ = −𝐸2. In beiden Fällen sind alle Vektoren Eigenvektoren.
• 𝑆(𝑣1𝑣2)

hat die Eigenvektoren +1 mit Eigenvektor
(𝑣1
𝑣2

)
und−1 mit Eigenvektor(−𝑣2

𝑣1

)
.

• 𝑇𝑥,𝑎 und 𝑇𝑦,𝑎 haben beide nur den Eigenwert 1. Zugehörige Eigenvektoren
sind

(1
0
)

für 𝑇𝑥,𝑎 und
(0
1
)

für 𝑇𝑦,𝑎.
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Wichtige Beispiele:

𝐷45◦ =

( 1√
2

− 1√
2

1√
2

1√
2

)
𝐷90◦ =

(
0 −1
1 0

)
𝐷180◦ =

(
−1 0
0 −1

)
𝑅(1

0) =
(
1 0
0 −1

)
𝑅(0

1) =
(
−1 0
0 1

)
𝑅(±1

1 ) =
(

0 ±1
±1 0

)

22.4 Affine Abbildungen

Eine affine Abbildung 𝑓 : R2 → R2 ist eine Hintereinanderausführung einer
linearen Abbildung mit Matrix 𝐴 und einer Verschiebung um den Vektor ®𝑏:

𝑓 (®𝑥) = 𝐴 · ®𝑥 + ®𝑏

Wichtige Eigenschaften:

®𝑏 = 1
2
(
𝑓 (®𝑥) + 𝑓 (−®𝑥)

) ®𝑏 = 𝑓 (®0)

𝐴 · (®𝑥 − ®𝑦) = 𝑓 (®𝑥) − 𝑓 (®𝑦) 𝐴 · ®𝑥 = 𝑓 (®𝑥) − 𝑓 (®0)

Sind 𝑓 (®𝑥) = 𝐴 · ®𝑥 + ®𝑏 und 𝑔(®𝑥) = 𝐵 · ®𝑥 + ®𝑐, dann ist

𝑓
(
𝑔(®𝑥)

)
= 𝐴 · 𝐵 · ®𝑥 + (𝐴 · ®𝑐 + ®𝑏)

Eine affine Abbildung 𝑓 (®𝑥) ist invertierbar, wenn die Matrix 𝐴 eine inverse
Matrix 𝐴−1 besitzt. Dann ist

𝑓 −1(®𝑥) = 𝐴−1 · ®𝑥 − 𝐴−1 · ®𝑏

Abbildungseigenschaften invertierbarer affiner Abbildungen imR2:
Sind 𝑃′, 𝑄′, 𝑅′ die Bilder der Punkte 𝑃,𝑄, 𝑅 unter einer affinen Abbildung,
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dann gilt:

• Liegen 𝑃,𝑄, 𝑅 in dieser Reihenfolge auf einer Geraden, dann gilt das
auch für 𝑃′, 𝑄′, 𝑅′.

• 𝑄′ teilt die Strecke 𝑃′𝑅′ im gleichen Verhältnis wie 𝑄 die Strecke 𝑃𝑅.
• Der Mittelpunkt einer Strecke wird auf den Mittelpunkt der Bildstrecke

abgebildet.
• Bilden 𝑃,𝑄, 𝑅 ein Dreieck, dann auch 𝑃′, 𝑄′, 𝑅′.
• Durch die Bilder der Ecken eines Dreiecks ist eine affine Abbildung

eindeutig festgelegt.
• Bilder paralleler Geraden sind wieder parallele Geraden.

22.5 Beispiel: Drehung um ein Drehzentrum
Eine Drehung um den Winkel 𝛼 gegen den Uhrzeigersinn bei gegebenem
Drehzentrum 𝑀 (𝑚1/𝑚2) wird durch die affine Abbildung

𝑓 (𝑥1, 𝑥2) =
(
𝑚1
𝑚2

)
+

(
cos(𝜑) − sin(𝜑)
sin(𝜑) cos(𝜑)

)
·
((
𝑥1
𝑥2

)
−

(
𝑚1
𝑚2

))
beschrieben.

Dabei ist
(
𝑥1
𝑥2

)
der Ortsvektor des Urbildes (𝑥1/𝑥2) und 𝑓 (𝑥1, 𝑥2) der Ortsvektor

des Bildpunktes (𝑥′1/𝑥
′
2) nach der Drehung um den Punkt 𝑀:
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23 Logik
23.1 Grundbegriffe der Logik
Eine logische Aussage 𝐴 ist ein sprachlicher Satz oder eine mathematische
Gleichung, der man eindeutig einen Wahrheitswert zuordnen kann.
Die möglichen Wahrheitswerte sind wahr (w oder 1) und falsch (f oder 0).

23.2 Logische Verknüpfungen und ihre Wahrheitswerttabellen
Zusammengesetzte Aussagen lassen sich mit Hilfe spezieller logischer Ver-
knüpfungen beschreiben.
Häufig verwendete Verknüpfungen heißen:

Negation Konjunktion Disjunktion Implikation
NOT, NICHT AND, UND OR, ODER IMPLY, FOLGT

¬ ∧ ∨ →

Bikonditional Kontravalenz Exlusion Rejektion
EQUIV, ÄQUIV XOR NAND NOR

↔ ¤∨ ∧̄ ∨̄

Sprachlich sind diese z. B. durch folgende Beschreibungen gegeben:

• ¬𝐴 ist nur dann wahr, wenn 𝐴 falsch ist
• 𝐴 ∧ 𝐵 ist nur dann wahr, wenn 𝐴 und 𝐵 beide wahr sind
• 𝐴 ∨ 𝐵 ist nur dann falsch, wenn 𝐴 und 𝐵 beide falsch sind
• 𝐴→ 𝐵 ist nur dann falsch, wenn 𝐴 wahr und 𝐵 falsch ist
• 𝐴 ¤∨ 𝐵 ist nur dann wahr, wenn entweder 𝐴 wahr oder 𝐵 wahr ist

Der Wahrheitswert einer zusammengesetzten Aussage ist eindeutig durch die
Wahrheitswerte der Aussagen bestimmt, aus denen sie zusammengesetzt ist.
Deshalb reicht es aus, die zusammengesetzte Aussage mit Hilfe ihrer Wahr-
heitswerttabelle anzugeben.
Wahrheitswerttabellen der häufig verwendeten Verknüpfungen:

𝐴 𝐵 ¬𝐴 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴→𝐵 𝐴↔𝐵 𝐴 ¤∨ 𝐵 𝐴 ∧̄ 𝐵 𝐴 ∨̄ 𝐵
1 1 0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1 1 0
0 0 1 0 0 1 1 0 1 1
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23.3 Logische Äquivalenz
Zwei zusammengesetzte Aussagen heißen logisch äquivalent, wenn sie die
gleiche Wahrheitswerttabelle haben.
Beispiele logisch äquivalenter Aussagen:

• 𝐴 und ¬(¬𝐴)
• 𝐴 ∧ 𝐵 und ¬(¬𝐴 ∨ ¬𝐵)

𝐴 𝐵 𝐴 ∧ 𝐵 ¬𝐴 ¬𝐵 ¬𝐴 ∨ ¬𝐵 ¬(¬𝐴 ∨ ¬𝐵)
1 1 1 0 0 0 1
1 0 0 0 1 1 0
0 1 0 1 0 1 0
0 0 0 1 1 1 0

• 𝐴 ∨ 𝐵 und ¬(¬𝐴 ∧ ¬𝐵)
• 𝐴→𝐵 und ¬𝐴 ∨ 𝐵
• 𝐴↔𝐵 und (𝐴→ 𝐵) ∧ (𝐵 → 𝐴)

Logische Ausdrücke lassen lediglich die zwei Wahrheitswerte 0 und 1 zu.
Daher liegt es nahe, logische Verknüpfungen mit Hilfe elektrischer Schaltungen
zu realisieren, welche selbst auf dem binären Prinzip (EIN, AUS) oder (hohes
Potential, niedriges Potential) basieren.
Dabei kann es sinnvoll sein, so wenig ”Grundschaltungen” wie nötig zu
verwenden. Es bleibt somit die Frage, wie viele logische Verknüpfungen man
benötigt, um alle weiteren durch logische Äquivalenzen zu erzeugen.
Es zeigt sich, dass sehr wenig Verknüpfungen ausreichen – es reicht sogar
eine einzige:

Alle logischen Verknüpfungen lassen sich allein mit Hilfe von
• ¬,∧ und ∨ darstellen.
• ¬ und ∧ darstellen.
• ¬ und ∨ darstellen.
• ∨̄ darstellen.
• ∧̄ darstellen.

Beispiele äquivalenter Verknüpfungen:

• ¬𝐴 und 𝐴 ∧̄ 𝐴 und 𝐴 ∨̄ 𝐴
• 𝐴 ∧ 𝐵 und (𝐴 ∧̄ 𝐵) ∧̄ (𝐴 ∧̄ 𝐵) und (𝐴 ∨̄ 𝐴) ∨̄ (𝐵 ∨̄ 𝐵)
• 𝐴 ∨ 𝐵 und (𝐴 ∧̄ 𝐴) ∧̄ (𝐵 ∧̄ 𝐵) und (𝐴 ∨̄ 𝐵) ∨̄ (𝐵 ∨̄ 𝐴)
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23.4 Anwendung: Realisierung mit Hilfe elektronischer Schaltun-
gen

Eingänge
𝐴, 𝐵

{
1 : ’Schalter EIN’ oder ’Messpunkt auf hohem Potential’
0 : ’Schalter AUS’ oder ’Messpunkt auf niedrigem Potential’

Ausgänge
Lampe, 𝑌

{
1 : ’Lampe EIN’ oder ’Messpunkt auf hohem Potential’
0 : ’Lampe AUS’ oder ’Messpunkt auf niedrigem Potential’

Beispiele:

Verknüpfung NOT ¬ AND ∧ OR ∨

Schaltbild (Gatter)

Schaltsymbol

Verknüpfung NAND ∧̄ NOR ∨̄

Schaltbild (Gatter)

Schaltsymbol
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24 Duales und hexadezimales Zahlensystem
24.1 Dezimalzahlen, Dualzahlen und Hexadezimalzahlen
Eine Zahl 𝑧 ∈ N stellt man im Dezimalsystem mit Hilfe seiner Ziffern dar:

𝑧 = . . . 𝑧4 𝑧3 𝑧2 𝑧1 𝑧0 wobei 𝑧𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Kennt man die Ziffern 𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4, . . ., dann erhält man die Dezimalzahl
𝑧, indem man diese ausrechnet:

𝑧 = 𝑧0 · 100 + 𝑧1 · 101 + 𝑧2 · 102 + 𝑧3 · 103 + 𝑧4 · 104 + . . .

Beispiel: 𝑧 = 3098 besitzt die Ziffern 𝑧0 = 8, 𝑧1 = 9, 𝑧2 = 0 und 𝑧3 = 3
Die Darstellung einer Zahl mit Hilfe von Ziffern nennt man Stellenwertsystem
(hier: bezüglich der Basis 10).
Statt der Basis 10, kann man jede andere Basis verwenden, um eine Zahl
darzustellen. Folgende Stellenwertsysteme sind insbesondere in der Informatik
sehr wichtig:

Dualsystem (Basis 2) Hexadezimalsystem (Basis 16)

𝑧 = 𝑑0 · 20 + 𝑑1 · 21 + 𝑑2 · 22

+ 𝑑3 · 23 + 𝑑4 · 24 + . . .
𝑧 = ℎ0 · 160 + ℎ1 · 161 + ℎ2 · 162

+ ℎ3 · 163 + ℎ4 · 164 + . . .

𝑑𝑖 ∈ {0, 1} ℎ𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴, 𝐵,
𝐶, 𝐷, 𝐸, 𝐹}

Hier stehen die Dualziffern 0, 1 für die Zahlen 0, 1 im Dezimalsystem und die
Hexadezimalziffern 0, . . . , 9, 𝐴, . . . , 𝐹 für die Zahlen 0, . . . , 9, 10, . . . , 15
im Dezimalsystem.
Beispiele:

• Im Dualsystem hat die Zahl 𝑧 = 3098 die Darstellung 110000011010, also
die Ziffern 𝑑0 = 0, 𝑑1 = 1, 𝑑2 = 0, 𝑑3 = 1, 𝑑4 = 1, 𝑑5 = 𝑑6 = 𝑑7 = 𝑑8 =

𝑑9 = 0, 𝑑10 = 1 und 𝑑11 = 1, weil

3098 = 0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 1 · 24 + 0 · 25 + 0 · 26

+ 0 · 27 + 0 · 28 + 0 · 29 + 1 · 210 + 1 · 211

• Im Hexadezimalsystem hat die Zahl 𝑧 = 3098 die Darstellung 𝐶1𝐴, also
die Ziffern ℎ0 = 𝐴, ℎ1 = 1 und ℎ2 = 𝐶, weil

3098 = 10 · 160 + 1 · 161 + 12 · 162

• 𝑧 = 0 hat in allen drei Stellenwertsystemen die gleiche Darstellung 0.

87



24.2 Umrechnung dezimal↔dual↔hexadezimal

24.2.1 Umrechnung dual/hexadezimal→dezimal

Liegt eine Zahl im Dualsystem . . . 𝑑3𝑑2𝑑1𝑑0 oder im Hexadezimalsystem
. . . ℎ3ℎ2ℎ1ℎ0 vor, erhält man die Zahl im Dezimalsystem, indem man sie
berechnet:

𝑧 = 𝑑0 · 20 + 𝑑1 · 21 + 𝑑2 · 22 + 𝑑3 · 23 + . . .
𝑧 = ℎ0 · 160 + ℎ1 · 161 + ℎ2 · 162 + ℎ3 · 103 + . . .

(siehe Beispiele aus Abschnitt 24.1).

24.2.2 Umrechnung dezimal→dual

Die Umrechnung einer Dezimalzahl in eine Dualzahl geschieht mit einem
Algorithmus, der lediglich die Halbierung von Zahlen benötigt:
Algorithmus: (für Zahlen größer als 0)

Beginn: 𝑎0 = 𝑧

Schritt:

{
Falls 𝑎𝑖 gerade, setzt man 𝑎𝑖+1 = 𝑎𝑖/2 und 𝑑𝑖 = 0
Falls 𝑎𝑖 ungerade, setzt man 𝑎𝑖+1 = (𝑎𝑖 − 1)/2 und 𝑑𝑖 = 1

Ende 𝑎𝑖 = 1

Beispiel: 𝑧 = 3098 ist dual 110000011010

𝑖 0 1 2 3 4 5 6 7 8 9 10 11

𝑎𝑖 3098 1549 774 387 193 96 48 24 12 6 3 1

𝑑𝑖 0 1 0 1 1 0 0 0 0 0 1 1

24.2.3 Umrechnung hexadezimal→dual

Weil 16 = 24 ist, wird jede Hexadezimalziffer ℎ𝑖 zu einem Block von vier
Dualziffern 𝑑4𝑖, 𝑑4𝑖+1, 𝑑4𝑖+2, 𝑑4𝑖+3.
Die Dualziffern des entsprechenden Blocks bestimmt man z. B. mit dem
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Algorithmus aus Abschnitt 24.2.2, und erhält:

0 0000 4 0100 8 1000 𝐶 1100

1 0001 5 0101 9 1001 𝐷 1101

2 0010 6 0110 𝐴 1010 𝐸 1110

3 0011 7 0111 𝐵 1011 𝐹 1111

Beispiel: 𝐶1𝐴 wird zu 1100.0001.1010 (Punkte nur zur Hervorhebung der
Viererblöcke)

24.2.4 Umrechnung dual→hexadezimal

Man teilt zunächst die Dualzahl von hinten beginnend in Viererblöcke auf
(dazu füllt man den vorderen Block ggf. vorne durch Nullen auf).
Dann berechnet man die Dezimalzahl, die zu dem entsprechenden Block
gehört (Abschnitt 24.2.1). Diese liegt zwischen 0 und 15. Das liefert die
entsprechende Ziffer in der Hexadezimaldarstellung.
Alternativ verwendet man die Tabelle aus Abschnitt 24.2.3.
Beispiel: 110000011010 besitzt (von hinten) die Blöcke 1010, 0001 und
1100 die den Zahlen 10, 1 und 12 entsprechen, siehe Abschnitt 24.2.1. Das
sind die Ziffern 𝐴, 1 und 𝐶 im Hexadezimalsystem. Die gesuchte Zahl ist
damit 𝐶1𝐴.

24.2.5 Umrechnung dezimal→hexadezimal

Für eine rechnerisch effektive Umrechnung stellt man die Dezimalzahl zunächst
dual dar (Abschnitt 24.2.2). Anschließend wandelt man die erhaltene Dualzahl
ins Hexadezimalsystem um (Abschnitt 24.2.4).

24.3 Anwendung: Rechnen mit Dualzahlen, Halb- und Volladdierer
Man kann zwei Dualzahlen addieren, indem man, wie bei Dezimalzahlen,
das Stellenwertsystem nutzt.
Man benötigt dazu die folgenden elementaren Summen:

0 + 0 = 1 , 1 + 0 = 1 , 0 + 1 = 1 , 1 + 1 = 10 , 1 + 1 + 1 = 10 + 1 = 11 .

Man beginnt bei der Addition zweier Zahlen mit den Ziffern der letzten Stellen.
Ist das Ergebnis 0 oder 1, dann notiert man dies als letzte Ziffer der Summe.
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Ist das Ergebnis 10, dann notiert man die 0 als letzte Ziffer und die 1 liefert
den Übertrag zur nächsten Stelle.
Beispiele:

1. Summand 0 1 0 1 1 0 1 1 1 1
2. Summand 0 1 0 1 0 0 1 0 0 1
Übertrag 1 1 1 1 1 1
Summe 1 0 1 0 1 1 1 0 0 0

Realisierung mit Hilfe logischer Schaltungen:
Halbaddierer zur Addition zweier einstelliger Dualzahlen mit Hilfe von
NAND-Gattern:

Symbol

(die Summanden A und B geben das Ergebnis ZY)
Volladdierer zur Addition dreier einstelliger Dualzahlen mit Hilfe zweier
Halbaddierer und einem OR-Gatter:

(die Summanden A,B und Ü1 geben die Summe Ü2S)

24.4 Anwendung: 4-Bit-Operationen
Eine Hexadezimalziffer entspricht einer vierstellige Dualzahl (einen Nibble).
Damit lassen sich Daten, die vier-Bit-codiert sind, als Hexadezimalziffer
darstellen.
Auf Hexadezimalziffern lassen sich logische Operationen anwenden, indem
man diese komponentenweise auf die 4-Bit-Darstellung anwendet.
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Dies ist komponentenweise auf 𝑘-stellige Hexadezimalzahlen und damit auf
4𝑘-Bit-Werte erweiterbar.
NOT lässt sich ohne 4-Bit-Darstellung darstellen: ¬𝑥 = 𝐹 − 𝑥 .
𝐹 − 𝑥 kann man berechnen, indem man zunächst 𝐹 und 𝑥 als Dezimalzahlen
darstellt und die Differenz 15 − 𝑥 anschließend wieder als Hexadezimalzahl.
Beispiele:

• ¬3 = ¬(0|0|1|1) = (¬0|¬0|¬1|¬1) = (1|1|0|0) = 𝐶 oder ¬3 = 𝐹 −3 = 𝐶

• 𝐴∧ 7 = (1|0|1|0) ∧ (0|1|1|1) = (1∧ 0|0∧ 1|1∧ 1|0∧ 1) = (0|0|1|0) = 2
• 𝐵 ∨̄ 5 = (1|0|1|1) ∨̄ (0|1|0|1) = (1 ∨̄ 0|0 ∨̄ 1|1 ∨̄ 0|1 ∨̄ 1) = (0|0|0|0) = 0
• Die vollständige Tafel für NAND:

∧̄ 0 1 2 3 4 5 6 7 8 9 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

0 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹

1 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸

2 𝐹 𝐹 𝐷 𝐷 𝐹 𝐹 𝐷 𝐷 𝐹 𝐹 𝐷 𝐷 𝐹 𝐹 𝐷 𝐷

3 𝐹 𝐸 𝐷 𝐶 𝐹 𝐸 𝐷 𝐶 𝐹 𝐸 𝐷 𝐶 𝐹 𝐸 𝐷 𝐶

4 𝐹 𝐹 𝐹 𝐹 𝐵 𝐵 𝐵 𝐵 𝐹 𝐹 𝐹 𝐹 𝐵 𝐵 𝐵 𝐵

5 𝐹 𝐸 𝐹 𝐸 𝐵 𝐴 𝐵 𝐴 𝐹 𝐸 𝐹 𝐸 𝐵 𝐴 𝐵 𝐴

6 𝐹 𝐹 𝐷 𝐷 𝐵 𝐵 9 9 𝐹 𝐹 𝐷 𝐷 𝐵 𝐵 9 9
7 𝐹 𝐸 𝐷 𝐶 𝐵 𝐴 9 8 𝐹 𝐸 𝐷 𝐶 𝐵 𝐴 9 8
8 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 7 7 7 7 7 7 7 7
9 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 𝐹 𝐸 7 6 7 6 7 6 7 6
𝐴 𝐹 𝐹 𝐷 𝐷 𝐹 𝐹 𝐷 𝐷 7 7 5 5 7 7 5 5
𝐵 𝐹 𝐸 𝐷 𝐶 𝐹 𝐸 𝐷 𝐶 7 6 5 4 7 6 5 4
𝐶 𝐹 𝐹 𝐹 𝐹 𝐵 𝐵 𝐵 𝐵 7 7 7 7 3 3 3 3
𝐷 𝐹 𝐸 𝐹 𝐸 𝐵 𝐴 𝐵 𝐴 7 6 7 6 3 2 3 2
𝐸 𝐹 𝐹 𝐷 𝐷 𝐵 𝐵 9 9 7 7 5 5 3 3 1 1
𝐹 𝐹 𝐸 𝐷 𝐶 𝐵 𝐴 9 8 7 6 5 4 3 2 1 0

25 Flächeninhalt und Umfang von Flächen
𝐴 : Flächeninhalt, 𝑈 : Umfang,
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25.1 Quadrat, Rechteck, Parallelogramm, Trapez, Raute, Dreieck

Quadrat Rechteck Parallelogramm Dreieck

𝐴 = 𝑎2

𝑈 = 4𝑎
𝐴 = 𝑎𝑏

𝑈 = 2(𝑎 + 𝑏)
𝐴 = 𝑎ℎ𝑎

𝑈 = 2(𝑎 + 𝑏)
𝐴 = 1

2𝑎ℎ𝑎
𝑈 = 𝑎 + 𝑏 + 𝑐

Trapez Drachenviereck

𝐴 = 1
2 (𝑎 + 𝑐)ℎ

𝑈 = 𝑎 + 𝑐 + 𝑏 + 𝑑

𝐴 = 1
2𝑒 𝑓

𝑈 = 2(𝑎 + 𝑏)
𝑒 =

√︁
𝑎2 + 𝑏2 − 2𝑎𝑏 cos(𝛽)

𝑓 =
2𝑎𝑏 sin(𝛽)

𝑒

25.2 Kreis, Kreisring, Kreisausschnitt, Kreisabschnitt

Kreis Kreisring Kreisausschnitt

𝐴 = 𝜋𝑟2

𝑈 = 2𝜋𝑟
𝐴 = 𝜋(𝑅2 − 𝑟2)
𝑈 = 2𝜋(𝑅 − 𝑟)

𝐴 = 𝜋𝑟2 𝜑

360◦

𝑈 = 2𝑟 + ℓ
ℓ = 2𝜋𝑟 𝜑

360◦
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Kreisabschnitt

𝐴 = 𝜋𝑟2 𝜑

360◦ −
1
2𝑟

2 sin(𝜑)
𝑈 = 2𝑠 + ℓ
ℓ = 2𝜋𝑟 𝜑

360◦

𝑠 = 𝑟 sin
( 𝜑

2
)

26 Volumen und Oberflächen von Körpern
𝑉 : Volumen, 𝑀 : Mantelfläche, 𝑂 : Oberfläche.

26.1 Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf

Würfel Quader allgemeines Prisma

a
a

a

a b

c

G

h

𝑉 = 𝑎3

𝑂 = 6𝑎2
𝑉 = 𝑎 𝑏 𝑐

𝑂 = 2(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐)
𝑉 = 𝐺ℎ
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quadratische Pyramide quadratischer Pyramidenstumpf

aa

hs

bb

aa

h s

𝑉 = 1
3𝑎

2ℎ

𝑀 = 𝑎
√

4ℎ2 + 𝑎2

𝑂 = 𝑎2 + 𝑀
𝑠 =

√︃
ℎ2 + 1

2𝑎
2

𝑉 = 1
3 (𝑎

2 + 𝑎𝑏 + 𝑏2)ℎ
𝑀 = (𝑎 + 𝑏)

√︁
4ℎ2 + (𝑎 − 𝑏)2

𝑂 = 𝑎2 + 𝑏2 + 𝑀
𝑠 =

√︃
ℎ2 + 1

2 (𝑎 − 𝑏)2

allgemeine Pyramide allgemeiner Pyramidenstumpf

G

h

Go

Gu

h

𝑉 = 1
3𝐺ℎ 𝑉 = 1

3 (𝐺𝑢 +
√
𝐺𝑢 𝐺𝑜 + 𝐺𝑜)ℎ

26.2 Zylinder, Kegel, Kegelstumpf, Kugel, Kugelteile

Zylinder Kegel Kegelstumpf

r

h

r

sh

R

r

sh

𝑉 = 𝜋𝑟2ℎ
𝑀 = 2𝜋𝑟ℎ

𝑂 = 2𝜋𝑟2 + 𝑀

𝑉 = 1
3𝜋𝑟

2ℎ
𝑀 = 𝜋𝑟𝑠

𝑂 = 𝜋𝑟2 + 𝑀
𝑠 =

√
𝑟2 + ℎ2

𝑉 = 1
3𝜋(𝑅

2 + 𝑅 · 𝑟 + 𝑟2)ℎ
𝑀 = 𝜋(𝑅 + 𝑟)𝑠

𝑂 = 𝜋𝑅2 + 𝜋𝑟2 + 𝑀
𝑠 =

√︁
ℎ2 + (𝑅 − 𝑟)2
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Kugel Kugelausschnitt Kugelabschnitt

r

s

h

k

r

s

h

k

r

𝑉 = 4
3𝜋𝑟

3

𝑂 = 4𝜋𝑟2

𝑉 = 2
3𝜋𝑟

2𝑘
𝑂 = 𝜋𝑠𝑟 + 2𝜋𝑟𝑘
𝑠 =

√
𝑟2 + ℎ2

𝑘 = 𝑟 − ℎ

𝑉 = 1
3𝜋𝑘

2(3𝑟 − 𝑘)
𝑂 = 𝜋𝑠2 + 2𝜋𝑟𝑘
𝑠 =

√
𝑟2 + ℎ2

𝑘 = 𝑟 − ℎ
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