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1 Mengenlehre

1.1 Grundbegriffe der Mengenlehre

Eine Menge M ist eine Zusammenfassung von Objekten. Diese Objekte
heiBen Elemente der Menge.

Bezeichnungen:

%)

Die leere Menge @ ist die Menge, welche kein Element
enthilt.

aeM Das Element a ist in der Menge M enthalten.
a¢M Das Element a ist nicht in der Menge M enthalten.
#M Die Anzahl der Elemente in der Menge M.
McN M ist Teilmenge von N:

M cC N, wenn jedes Element MCN
aus M auch Element aus N
1st. N

1.2 Mengenoperationen

sind:

Die Schnittmenge M N N besteht aus allen
Elementen, die sowohl in M und in N enthalten MAON

aeMnN

N,wenna € Munda € N

enthalten sind:

Die Vereinigungsmenge M U N besteht aus allen
Elementen, die in einer der Mengen M oder N MUN

a€MUN,wenna € M odera € N
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Die Differenzmenge M \ N besteht aus allen
Elementen, die in M enthalten sind, aber nicht
inN:

aeM\N,wennae Munda ¢ N

M\ N

Die symmetrische Differenzmenge M AN be-
steht aus allen Elementen, die in einer der beiden
Mengen M oder N enthalten sind, aber nicht in
beiden gleichzeitig:

aeMAN,wenmnae MUNunda¢é MNN

MAN

Wenn M selbst Teilmenge einer groleren Menge
ist, dann kann man die Komplementmenge M C
(oder M) bilden. Sie besteht aus allen Elementen,
die nicht in M liegen:

aEMC,wennagEM

Grundlegende Eigenschaften:

* Fiir alle Mengen M gilt@ Cc Mund M C M.

* M = N gilt genau dann, wenn M C Nund N C M.

cMNP=p,MUZ=M

e MN(NUR)=(MNN)U(MNR)
e MU(NNR)=(MUN)N(MNR)
*M\(NNR)=(M\N)U(M\R)

e IstMNN=¢g,dannist M\ N=Mund N\ M = N.
*MAN=(M\N)U(N\M)=(MUN)\ (NnM)

e M\N=MnNC
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e MUN=MnN)UMnNY U ML AN

Die Potenzmenge (M) einer Menge M besteht aus allen Teilmengen der
Menge M:

P(M) = {N|N c M}

Die Elemente der Potenzmenge ¥ (M) sind selbst Mengen.

Eigenschaften:
* 3, M e P(M)
: P(2) = (2)
e Sind N,R € P(M), dann sind auch NN R, NUR,N\ R € P(M).
o Ist #M = n, dann ist #P (M) = 2".

1.3 Die Zahlenbereiche

Natiirliche Zahlen N |0, 1, 2,3,4,...,1001,...

Ganze Zahlen 7Z ...,—550,...,-2,-1,0,1,2,3,...,1200,...

Rationale Zahlen () |Briiche; abbrechende und periodische Dezimalzahlen

Reelle Zahlen R Alle Zahlen der Zahlengerade; alle Dezimalzahlen

Hinzu kommen die komplexen Zahlen C , siehe Abschnitt 13.
Esgit NcZcQcRcC.

Wichtige Mengen im Umgang mit Funktionen sind die Teilmengen der reellen
Zahlen. Darunter haben die Intervalle eine herausragende Bedeutung.

Man unterscheidet abgeschlossene, offene und halboffene Intervalle, je nach-
dem ob beide Randpunkte, kein Randpunkt oder ein Randpunkt zum Intervall
gehoren.

Dabei sind +co und —oo als offene Rander ausdriicklich zugelassen.
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Fiir a, b € R schreibt man:

[a,b] = {x € ]R|a <x< b} abgeschlossen
]a,b[z{xelR|a<x<b} offen
la,b] = {x € R|a < x < b} halboffen
[a,b[:{xER|a3x<b} halboffen
]—o0, b] = {x € ]R|x < b} halboffen
]—oo,b[:{xe]R|x<b} offen
[a, +oo| = {x € ]R|x > a} halboffen
]a,+oo[:{x€]R|x>a} offen

Weitere gelaufige Bezeichnungen fiir die letzten vier Intervalle sind
]-c0,b] =R, ]-co,b[ =R*’, [a,+c0[ =R, Ja,+co[=R".

Als weitere Schreibweisen nutzt man Rt = R>" und Ry = R=0.

2 Grundlegende Arithmetik, Algebra und Geometrie

2.1 Klammerrechnung

Fiir alle reellen Zahlen a, b, c,d € R gelten folgende Regeln im Umgang mit
Klammern:

Distributivgesetz

a-(bxc)=ab+ac (a+b)-(c+d)=ac+ad+bc+bd

Binomische Formeln

(a £b)> =a®+2ab+b? (a+b)-(a—b)=da*>-b*

2.2 Bruchrechnung

Ein Bruch ist eine Zahl der Form % .
Dabei sind a € Z und b € 7Z\{0} zwei Zahlen, die vom Bruchstrich getrennt
werden.

a a
a heif3t Zahler und b heilit Nenner des Bruchs 5 Der Bruch — entspricht der

Dezimalzahl, die man bei der Berechnung von a : b erhilt.
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Ein Bruch entspricht immer entweder einer abbrechenden oder periodi-
schen Dezimalzahl. Umgekehrt ldsst sich jede abbrechende oder periodische
Dezimalzahl als Bruch darstellen.

Alle Briiche zusammen bilden die rationalen Zahlen @).
Fiir a € 7Z wird der Bruch % mit der ganzen Zahl a identifiziert.

Briiche dndern ihren Wert nicht, wenn man sie erweitert oder Kiirzt:

Erweitern: 2% firce Z\{0}
b _b-c
.. a a:c . .
Kiirzen: 755 fiir c € 7\ {0}, welches a und b teilt
c

Rechenregeln im Umgang mit Briichen:

a+c_a~dib-c a ¢ _a-c a ¢ _a é_a-d

b~d  b-d b d b-d b'd b ¢ b-c
Spezialfille:

%-czc-%:g fiir c € Z %:czﬁ fiir ¢ € Z\{0}

b
Der Kehrwert eines Bruches % ist der Bruch —.

a
o a b
Es gilt insbesondere | - - — =1
b a
2.3 Potenzrechnung
Potenzschreibweise: a'=a-a-...-a
————
n-mal

a” heifit Potenz. Dabei heifit a € R die Basis und n € N \ {0} der Exponent.
Die folgenden Rechenregeln heilen Potenzgesetze:

n n
a _ a a\"n
am.an:amﬂi _:anm an~b"=(a-b)” _:(_)
a™ b" b
m\n m-n 0 -n 1
(Cl ) =d a =1 a = —
a’
@
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2.4 Anwendung: MaBvorsatze

Im Zusammenhang mit technischen und physikalischen GroBen stof3t man oft
auf sehr grof3e oder sehr kleine Zahlen. Verwendetet Groenbereiche sind da

z. B.

0,000000013 F (elektrische Kapazitit)
12500000 Q2 (elektrischer Widerstand)
8500000000 W (Leistung deutscher Offshore-Windparks, 2023)

0,00000000008 m (typischer Atomradius)

9460000000000000 m (ein Lichtjahr)
Zur besseren Handhabbarkeit und Vergleichbarkeit solcher Gro3en nutzt man
fiir die Zehnerpotenzen spezielle MaBvorsitze (oder Prifixe), die man den
Einheiten voranstellt. Diese MaBvorsitze sind:

Prifix (0] R Y V4 E P T G M k h da

Name Quetta|Ronna | Yotta| Zetta | Exa | Peta | Tera | Giga |[Mega| Kilo [Hekto| Deka

Zehnerpotenz|| 103 | 10%7 [ 10** | 102! [ 10'8 [ 10 | 10'> | 10° | 10° | 10° | 10* | 10

Prafix d c mm u n p f a z y r q

Name Dezi | Zenti | Milli | Mikro [Nano | Piko |Fempto| Atto |Zepto | Yokto | Ronto [ Quekto
Zehnerpotenz || 107! | 1072 [ 1073 107® [ 107° [10~12| 1015 |107!8|1072! | 1072*[10-%7 | 10~

Die oben genannten Beispiele werden damit zu
13-10° F = 13nF (elektrische Kapazitit)
12,5-10°Q = 12,5 MQ (elektrischer Widerstand)
8,5-10°W =8,5GW (Leistung deutscher Offshore-Windparks, 2023)
80-107"2m =80 pm  (typischer Atomradius)
9,46 - 10> m = 9,46 Pm (ein Lichtjahr)

2.5 Wurzelrechnung

Quadratwurzel aus a > 0 Va=c mitc2=a, ¢c>0
Dritte Wurzel aus a € R Ya=c mite’ =a

a € R (n € N ungerade) c"=a

>0 N d "=a,c>0
n-teWurzelaus{a_ (n € N gerade) {fa = ¢ mit {Cn @ ¢




Verbindung zwischen Wurzeln und Potenzen:

a = an

Die Rechenregeln fiir Wurzeln oder Wurzelgesetze:

b

ga 6=4a5| | Yo

a

b

| (37 = va] [V = (5"

2.6 Logarithmusrechnung

log,(b) ist diejenige Zahl x, fiir die a* = b ist

Man spricht log, (b) als Logarithmus von b zur Basis a.

Es gilt:

log,(a") =n

log,(1) =0

log,(a) =1

Logarithmengesetze:

Logarithmen zur gleichen Basis:

log,(b - ¢) =log,(b) +log,(c)

loga(b : C) = loga(b) - IOga(C)

loga(bn) =n- loga(b)

Logarithmen zu unterschiedlichen Basen:

log,(c) =

log,(c)
log,, (b)

Bezeichnungen fiir Logarithmen zu speziellen Basen:

Dekadischer
Logarithmus

lg(b) =logo(b)

1d(b) = log,(b)

Dualer
Logarithmus

Natiirlicher
Logarithmus

In(b) = log, (b)

Hier bezeichnet e = 2,718281828459 . . . die Eulersche Zahl.
2.7 Losungen linearer Gleichungen

Bei einer linearen Gleichung ax + b = 0 muss stets a # 0 sein.

b
Es gibt genau eine Losung x = ——
a
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2.8 Lésungen quadratischer Gleichungen

Bei einer quadratischen Gleichung ax? + bx + ¢ = 0 muss stets a # 0 sein.
Alle Losungen der quadratischen Gleichungen berechnet man mit

Es konnen folgende Fille auftreten:

2
p? > 4q genau zwei Losungen| x. = —g + (g) —-q (pq-Formel)
p? =4q | genau eine Losung | x = —g
p? < 4q | keine Losung
2.9 Prozentrechnung
G: Grundwert
. . P
p: Prozentsatz in % Basisformel: (W =G - 100
W: Prozentwert

%4 %4
Abgleitete Formeln: G =100 — und p=100- rel
P

2.10 Kongruenz, Ahnlichkeit und die Strahlensitze

Zwei Dreiecke heillen kongruent, wenn die Seitenlidngen des einen mit den
Seitenlidngen des anderen iibereinstimmen.

Zwei Dreiecke sind genau dann kongruent, wenn Sie durch Verschiebung,
Drehung und/oder Achsenspiegelung auseinander hervorgehen.

Zwei Dreiecke heif3en ahnlich, wenn die Winkel des einen mit den Winkeln
des anderen iibereinstimmen.

Zwei Dreiecke sind genau dann dhnlich, wenn Sie durch Verschiebung,
Drehung, Achsenspiegelung und/oder zentrischer Streckung auseinander
hervorgehen.

Zwei kongruente Dreiecke sind dhnlich.
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Aus der Ahnlichkeit von Dreiecken folgen die Strahlensiitze:

Werden zwei Strahlen von parallelen Geraden gekreuzt, dann gelten folgende
Verhiltnisgleichungen, die Strahlensétze heillen:

ZA  ZB ZA  AB

ZA' 7B ZA"  A'B

2.11 Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras be-
schreibt in rechtwinkligen Dreiecken Bezeichnungen:
Beziehungen zwischen

e den Katheten,
e der Hypotenuse,

Hypotenuse

* den Hypotenusenabschnitten und
* der Hohe.

Der Satz des Pythagoras: b2

Die Summe der Quadrate iiber den Ka- b a’
theten entspricht dem Quadrat iiber der
Hypotenuse:

a® +b%=c? 2

G



Der Kathetensatz:

Das Quadrat tiber einer Kathete ent- ) b?
spricht dem Rechteck aus zugehori- b
gem Hypotenusenabschnitt und Hy-
potenuse: ! !

a*=c-p b*=c-gq AN +

Der Hohensatz:

Das Quadrat iiber der Hohe entspricht b B2
dem Rechteck aus den zwei Hypote-
nusenabschnitten:

h2=p'q ’/,

2.12 Der Satz des Thales und der Umfangswinkelsatz

Der Umfangswinkelsatz:

Alle Dreiecke liber der Sehne s eines
Kreises haben den selben Umfangswin-
kel ¢ oder = 180° — ¢, je nachdem,
ob der Mittelpunkt des Kreises innerhalb
oder auBlerhalb des Dreiecks liegt, das
aus Sehne und Umfangspunkt gebildet
wird.

Die Sehnen-Tangentenwinkel ist genau-
so grof} wie der Umfangswinkel.

Der Mittelpunktswinkel ist doppelt so
grof3 wie der Umfangswinkel.

Der Satz des Thales ist der wichtige Spezialfall des Umfangswinkelsatzes zu
den Winkeln ¢ = ¢ = 90°:
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Satz des Thales:

Alle Dreiecke, die den Durchmesser eines
Kreises als Hypotenuse besitzen und de-
ren dritter Punkt auf dem Kreis liegt, sind
rechtwinklig.

Umgekehrt liegen die Ecken eines recht-
winkligen Dreiecks auf einem Kreis, dessen
Mittelpunkt in der Mitte der Hypotenuse
liegt.

3 Lineare Gleichungssysteme

3.1 Lineare Gleichungssysteme

Ein lineares Gleichungssystem (L.GS) hat folgende allgemeine Form:

al,l-x1+ al,z-X2+...+ algn-xn=b1
ai1-XxXy1+ azp-xp+...+ az,n'xn=b2

am’l'xl+am,2'x2+...+am’n°x,/l:bm

Im Fall von m Gleichungen und n Variablen x1, x5, . . ., x,, spricht man von
einem m X n-LGS

Die a; ; heilen Koeffizienten und die b; rechte Seite des LGS.
Im Fall m = n spricht man von einem quadratischen LGS der Grofie n X n.

Eine Losung eines m X n-LGS ist ein n-Tupel von Zahlen, fiir das alle m
Gleichungen erfiillt sind, wenn man die Variablen durch diese Zahlen ersetzt.

3.2 Dreieckform und Ruickwarts-Einsetzen

Ein quadratisches LGS liegt in spezieller Dreieckform vor, wenn es die
folgende Gestalt hat

ail - Xy + ain - x2 + ...+ aln-1Xn-1 + a1 nXn :bl

ap-xX2+...+ AaAyp-1Xp-1+ AaA2pXp= b2

Ap—1n-1Xn-1 T Ap—10Xn = bn—l

ApnnXn = bn

wobei alle Diagonalkoeffizienten a1, a22,...,an, #0




Lasst sich ein quadratisches LGS in spezielle A-Form iiberfiihren, dann
hat das LGS genau eine Losung.

Diese Losung erhilt man in n Schritten durch Riickwirts-Einsetzen:

1. Schritt: Man bestimmt aus der letzten Gleichung die Losung fiir x,,

2. Schritt: Man bestimmt aus der zweitletzten Gleichung mit x,, die
Losung fiir x,,—;

3. Schritt: Man bestimmt aus der drittletzten Gleichung mit x,,, x;—;
die Losung fiir x,,_»

n—1. Schritt: Man bestimmt aus der zweiten Gleichung mit xs, . . ., x, die
Losung fiir x;

n. Schritt: Man bestimmt aus der ersten Gleichung mit x,, . . ., x, die
Losung fiir x;

3.3 Der GauB-Algorithmus

Folgende drei elementare Umformungen (GauBschritte) dndern die Losungen
eines LGS nicht:

Typ 1: Zeilentausch

Typ 2: Multiplikation einer Gleichung mit einer Zahl ungleich Null oder
Division einer Gleichung durch eine Zahl ungleich Null

Typ 3: Addieren einer Gleichung zu einer anderen oder Subtraktion einer
Gleichung von einer anderen

Man die Umformungen vom Typ 2 und Typ 3 in folgender Form gleichzeitig
anzuwenden:

Typ 4: Addieren des Vielfachen einer Gleichung zu einer anderen oder
Subtraktion des Vielfachen einer Gleichung von einer anderen

Mit Hilfe der Umformungen vom Typ 1 bis Typ 4 lasst sich ein LGS vereinfa-
chen und gegebenenfalls in die spezielle A-Form tiberfiihren.

Man spricht vom GauB3-Algorithmus oder einfach vom Additionsverfahren)
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3.4 Loésungsstruktur kleiner quadratischer LGS

3.4.1 Lésungsstruktur von 2 x 2-LGS

Fall 1 Fall 2 Fall 3
2x —5y=3 x—-3y=-1 3x+y=3
3y=-19 0=-1 0=0
spezielle A-Form "allgemeine’ A-Form | | ’allgemeine’ A-Form
genau eine Losung keine Losung unendlich viele
(durch riickwirts (letzte Gleichung nicht Losungen
Einsetzen) l6sbar)

3.4.2 Lésungsstruktur von 3 x 3-LGS

Fall 1 Fall 2a Fall 2b
—3x—-8y—-3z=-3 —3x—-8y— 3z=-3 —3x—-8y—-3z=-3
—-3y—-62z=6 —-5y+12z=-12 0=0
3z=-3 0=2 0=-1
spezielle A-Form "allgemeine’ A-Form | | ’allgemeine’ A-Form
genau eine Losung keine Losung keine Losung
(durch riickwarts (letzte Gleichung nicht| |(letzte Gleichung nicht
Einsetzen) l6sbar) losbar)
Fall 3a Fall 3b
—-3x—-8y—- 3z=-3 —3x—-8y—-3z=-3
-S5y+12z=-12 0=0
0=0 0=0
"allgemeine’ A-Form | | ’allgemeine’ A-Form
unendlich viele unendlich viele
Losungen Losungen

4 Folgen und Reihen

4.1 Grundbegriffe zu Folgen und Reihen

Eine Zahlenfolge oder kurz Folge ist eine geordnete unendliche Menge von
Zahlen (ag,ay,as,...).

Man schreibt fiir eine Folge abkiirzend (a,), also (a,) = (ag, ay, as, . ..).
Die Zahlen a;, k =0, 1,2, .. ., heilen Folgenglieder.
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Eine Reihe ist eine spezielle Folge (s,) = (5o, 51, 52, . . .). Ihre Folgenglieder

s sind Summen der Folgenglieder einer Folge (a,). Fir k =0,1,2...ist

k

sk=a0+a1+...+ak_1+ak=Za,-,

i=0

4.2 Arithmetische und geometrische Folgen und Reihen

explizite Definition | rekursive Definition
Arithmetische Folge ar=ao+k-d ar =ax_1+d
Geometrische Folge ap = ap - qk ap =dax-1-¢q
) ) ) k+1
Arithmetische Reihe | s; = 5 (ao + ax)
1 - qk+1
Geometrische Reihe Sk = dop 7
-9

4.3 Grenzwert einer konvergenten Zahlenfolge

Fiir alle € > 0 gibt es ein n¢, sodass

n—oo

la, — g| < e fiiralle n > n,

lim a, =g {

Man sagt: Fiir n > n. liegen alle Folgenglieder a,, in der e-Umgebung von g.
Besitzt (a,) einen Grenzwert g = lim a,, dann heif3t die Folge konvergent,

n—0oo

andernfalls heif}t sie divergent.

4.4 Grenzwert der geometrischen Reihe

ko
Die geometrische Reihe (s,) mit sy = ag ), ¢' konvergiert nur, wenn
i=0
—1 < g < 1list. Es gilt:
. a
lgl <1 = lim s, = 0
n—0oo 1 - q
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4.5 Schranken von Zahlenfolgen

S, heillt untere Schranke der Zahlenfolge (a,) < a, > S, firallen

S, heilit obere Schranke der Zahlenfolge (a,) < a, < S, fiirallen

untere Schranke

nach oben beschrinkt

,dann heilt (a;)
obere Schranke

—

) nach unten beschrankt
Hat (a,) eine

4.6 Monotonie von Zahlenfolgen

Die Folge (a,) steigt monoton dn,+] > a, firalle n

Die Folge (a,) steigt streng monoton ans1 > a, firalle n

Die Folge (a,) fallt monoton dn+1 < a, firalle n

1111

Die Folge (a,) fallt streng monoton ane1 < a, firallen

4.7 Nitzliche Grenzwertsatze

Monotoniekriterium

Ist (a,) monoton steigend nach oben beschrinkt dann ist
Gn monoton fallend nach unten beschrankt|’

(ay,) konvergent.

Einschachtelungskriterium

Sind (a,) und (b,) konvergent mit gleichem Grenzwert lim a, =

n—oo
lim b, = g und gilt a; < c¢; < by fiir alle Folgenglieder von (c¢,),
n—oo

dann konvergiert (c,) ebenfalls mit Grenzwert g.




Kriterium fiir Summen und Produkte

Sind (a,) und (b,) konvergent mit lim a, = g, und lim b, = g,
n— oo n—o0

dann konvergieren Summe und Produkt der Folgen ebenfalls mit
lim (an + bn) =818 und lim (an ’ bn) = 81" 82

Gilt zusitzlich noch by, g2 # 0, dann konvergiert auch der Quotient
der Folgen mit
an _ 81

Im — = =—.
by g

4.8 Anwendung: Zinseszins, Spar-, Renten- und Ratenplane

4.8.1 Entwicklung eines verzinsten Grundkapitals

Ko Anfangskapital

p Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

k Anzahl der Sparraten pro Zinsperiode,
typisch: £k = 1, 12 oder 365 (Jahr, Monat oder Tag)
qg=1+ 7 Og- . Zinsfaktor
n Anzahl der vollen Zinsperioden
¢ Anzahl der zuséatzlichen Verzinsungen innerhalb einer
begonnenen Zinsperiode, 0 < € < k
K Kapital nach (n - k + £)-maliger Verzinsung

K — K() . q}’lk+€

4.8.2 Entwicklung eines Sparplans

So RegelmiBige Sparzahlung

16
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p Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

k Anzahl der Sparzahlungen pro Zinsperiode,
typisch: k = 1 oder 12 (Jahr oder Monat)

g=1+ 10(1; — [Zinsfaktor

n Anzahl der vollen Zinsperioden

¢ Anzahl der zusitzlichen Sparnzahlungen innerhalb
einer begonnenen Zinsperiode, 0 < € < k

S Kapital nach (n-k + ¢)-maliger Einzahlung

nk+t _ 1
vorschiissig: S=80-¢g-
qg-—1
qn-k+€ -1
nachschiissig: S=350- 1
q —_—

4.8.3 Entwicklung eines Renten-/Ratenplans

Ko Kapital-/Kreditbetrag zu Beginn der Verren-
tung/Ratenzahlung

R RegelmiBige Renten-/Ratenzahlung

p Zinsen pro Zinsperiode in %,
typische Periode: ein Jahr

k Anzahl der Renten-/Ratenzahlungen pro Zinsperiode
typisch: k = 1 oder 12 (Jahr oder Monat)

g=1+ 10(1; — [Zinsfaktor

n Anzahl der vollen Zinsperioden

o 17
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¢ Anzahl der zusitzlichen Renten-/Ratenzahlungen in-
nerhalb einer begonnenen Zinsperiode, 0 < £ < k

K Barwert nach (n-k + ¢)-maliger Renten-/Ratenzahlung
qn-k+€ 1
vorschiissig: K=Ky -¢"*“-R.-q- .
q —
qn~k+£’ 1
nachschiissig: K=Ky -¢"*“-R- ;
q —

Durch Nullsetzen dieser Formeln ergeben sich die Hohe der regelméBigen
Renten-/Ratenzahlung oder die Laufzeit der Zahlungen:

1. Laufzeit der Renten-/Ratenzahlung bei gegebener Rentenhohe

In(g-R)—In(g-R-(g—-1) -K
vorschiissig: |(n-k+{= (¢-R) (4 (q-1) - Ko)
In(g)
In(R)—-In(R-(g-1) - K
nachschiissig: n-k+0= (R) (R-(g-1)-Ko)
In(q)

2. Hohe der regelmiBigen Renten-/Ratenzahlung bei gegebener Laufzeit

vorschiissig: R=Kj- 4 '(kclf )
q - (qn +f _ 1)
n-k+{ _ 1
nachschiissig: | R =K - """ (g - 1)
qn-k+€ -1

5 Schranken, Grenzwerte und Stetigkeit von Funktionen

5.1 Grundbegriffe zu Funktionen

Eine Funktion f ordnet einer reellen Zahl x eine reelle Zahl f(x) zu.

f(x) heifit der Funktionswert der Funktion f an der Stelle x.

Die Werte x € R, die man in die Funktion einsetzen kann, bilden den
Definitionsbereich von f. Man schreibt D s C RR.
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Die Menge, in der eine Funktion ihre Werte annimmt, heiflt Zielbereich.
In den hier vorliegenden Situationen ist der Zielbereich immer die Menge
R der reellen Zahlen. Man schreibt f : Dy — IR. Eine Einschrinkung des
Zielbereichs auf eine echte Teilmenge von R ist moglich.

Die Werte f(x) € R, die von der Funktion tatsidchlich angenommen werden,
bilden den Wertebereich (auch Bildbereich) der Funktion f. Man schreibt
A\ f < R.

£:Ds > R heibt

injektiv < (f(x) = f(y) = x =)
oder

x#y= f(x)# 1)
D. h. : die Bilder der Funktion f sind eindeutig

surjektiv <= Firalley € R gibteseinx € Dy, sodass f(x) = y.
D. h.: jeder Wert im Zielbereich wird getroffen

bijektiv <= f istinjektiv und surjektiv

monoton steigend f(x1) < f(x2)
streng monoton steigend P f(x1) < f(xp)
monoton fallend f(x1) = f(x2)
streng monoton fallend f(x1) > f(xp)

fiir alle x1, xp € ]Df mit x| < X

* Schriankt man den Zielbereich einer Funktion von vornherein auf den
Wertebereich ein, dann ist eine injektive Funktion auch bijektiv.
* Jede streng monotone Funktion ist injektiv.

Der Graph einer Funktion f(x) ist die Punktmenge

{(a/f(a))]a €Dy}

Mithilfe dieser Punkte kann man den Graph in einem Koordinatensystem
skizzieren.

* Eine Funktion f(x) heiit achsensymmetrisch zur Parallelen zur y-
Achse durch x = xy, wenn der Graph von f(x) bei einer Spiegelung an
dieser Geraden in sich iiber geht.

Rechnerisch lésst sich das wie folgt iiberpriifen:

fxo—x) = f(xo+x)




* Eine Funktion f(x) hei3t punktsymmetrisch zum Punkt (xy/y(), wenn
der Graph von f(x) bei einer Drehung um 180° in sich iiber geht.
Rechnerisch ldsst sich das wie folgt iiberpriifen:

fxo+x)—yo=yo— f(x0—x)

Wichtige Spezialfille:

* Eine Funktion heift gerade, wenn sie achsensymmetrisch zur y-Achse ist,
also

f(x) = f(=x)

* Eine Funktion hei3t ungerade, wenn sie punktsymmetrisch zum Ursprung
(0/0) ist, also

J(x) =—f(=x)

5.2 Umkehrfunktion

Wenn eine Funktion f : Dy — W/ injektiv ist, dann gibt es zu dieser
Funktion eine Umkehrfunktion.

Fiir die Umkehrfunktion schreibt man

f_1 : ]fol — Wf—l

Dabei kehren sich Definitionsbereich und Wertbereich um, d. h.
Df—l :Wf und Wf—l =Df

Eigenschaften:

« Zur Berechnung von f~!(x) kann man in manchen Fillen die Gleichung
f(x) = y nach x auflosen und anschlieBend die Namen der Variablen
tauschen.

 Den Graphen der Umkehrfunktion f~!(x) erhilt man, indem man den
Graphen von f(x) an der Winkelhalbierenden y = x spiegelt.

5.3 Schranken monotoner Funktionen

S, ist obere Schranke von f
— f(x) < S, fiir alle x
S, ist kleinste obere Schranke von f

&= §, ist obere Schranke und fiir alle € > 0 gibt es ein x,, sodass
f(x) > S, — € fiir alle x > x,
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S, ist untere Schranke von f
— f(x) > S, fiir alle x
Su ist groBte untere Schranke von f

&= §, ist untere Schranke und fiir alle € > 0 gibt es ein x., sodass
f(x) < 8, + € fiir alle x > x,

54

Endliche Grenzwerte von Funktionen

Die Zahl g heiBit Grenzwert der Funktion f an der Stelle x¢ und man schreibt
lim f(x) = g, wenn eine der folgenden Bedingungen erfiillt ist (hier ist

X—X0

Xo = +oo erlaubt):

X

{ fiir alle € > 0 gibt es ein x,, sodass

lim f(x) =
x—)oof() 8 |f(x) —g| < efiiralle x > x,

lim f(x) =g

fiir alle e > O gibt es ein x,, sodass
| £(x) — g| < € fiir alle x < x,

lim f(x) =g

X—X0

fiir alle € > 0 gibt es ein 6 > 0, sodass
|f(x)—g| <efirallexo—6 <x <xp+0

5.5 Stetigkeit von Funktionen

f ist stetig im Punkt (xo/f(x0)) & xli_)r? f(x) = f(xo0)

G
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5.6 Unendliche Grenzwerte von Funktionen

+o00 ist unendlicher Grenzwert der Funktion f an der Stelle xy, wenn eine
der folgenden Bedingungen gilt (hier ist xg = +oo erlaubt):

, fiir alle C = 0 gibt es ein x¢, sodass
lim f(x) =00 B
x—00 f(x) = C fiir alle x > x¢

_ fiir alle C = 0 gibt es ein x¢, sodass
lim f(x) =400 B
X——00 f(x) = C fir alle x < x¢

, fiir alle C = 0 gibt es ein 6 > 0, sodass
lim f(x) =+00
xX—Xo f(x)zCfirallexo—6 <x <x9+9

6 Ganzrationale Funktionen

6.1 Lineare Funktionen/Geraden

Eine Funktion, die sich in die Form | f(x) = mx + b |umrechnen ldsst, heil3t
lineare Funktion.

%

P(xp/ypr)

m: Steigung

b: y-Achsenabschnitt

Der Graph einer linearen Funktion ist eine Gerade.
m >0 m <0 m=0
Gerade steigt Gerade fallt Gerade waagerecht

Definitionsbereich|D s = R

Wertebereich Wyr=Rfallsm #0und Wy = {b} fallsm =0

22 ®
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Symmetrie:

* Eine lineare Funktion ist punktsymmetrisch zu jedem Punkt des Graphen.

* Eine lineare Funktion ist genau dann punktsymmetrisch zum Ursprung,
also ungerade, wenn b = O ist.

Senkrechte Geraden:

Zwei Geraden fi(x) = mx + by und f>(x) = mox + b, sind genau dann
senkrecht zueinander, wenn mj - mp = 1.

6.2 Quadratische Funktionen/Parabeln

Eine Funktion, die sich in eine der Formen aus der Tabelle umrechnen lasst,
heifit quadratische Funktion:

Normalform (NF) f(x)=ax*+bx+c a # 0, b, c Zahlen

Scheitelpunktform (SPF)|f(x) = a(x —xs)? +ys |a # 0, xs, ys Zahlen

Nullstellenform (NSTF) |f(x) = a(x —x1)(x —x2)|a # 0,x1, x, Zahlen

Die NF und die SPF gibt es immer. Die NSTF gibt es nur, wenn yg - a < 0.

Der Graph einer quadratischen Funktion heif3t Parabel

Definitionsbereich| D = R

Wertebereich Wy =R fallsa > 0und Wy = R=s fallsa < 0

Wichtige Beziehungen: v A
b
X§ = ——
(NF — SPF) 2a
ys = f(xs)
Xg = X1+ X2 x»
(NSTF — SPF) 2 2 /c ’
ys = f(xs) c
x1)=0
(NF. SPF > NsTR)| V)
f(x2) =0 (zs/ys)




Symmetrie:
* Eine quadratische Funktion ist achsensymmetrisch zur Senkrechten durch
ihren Scheitelpunkt.

* Eine quadratische Funktion ist nur dann gerade, also achsensymmetrisch
zur y-Achse, wenn ¢ = 0 ist.
6.3 Ganzrationale Funktionen und ihre Eigenschaften

Lineare und quadratische Funktionen sind Spezialfille einer ganzrationalen
Funktion (auch Polynom):

1

F(x) = apx™ + ap 1 X"+ ¥ aox® + arx + ag

ao, . ..,a, Zahlen, a, #0

n: Grad von f(x) a,: Leitkoeffizient von f(x)

ao: y-Achsenabschnitt von f(x)

Definitionsbereich|D » = R

Wertebereich nungerade: W, =R

unten
n gerade: W y nach {oben

} beschrinkt, falls {a” g O}

a, <0

Anzahl der Nullstellen und Extrema:

Anzahl Nullstellen von f(x)|Anzahl Extrema von f(x)

indestens 1 und
ungerade m1‘1.1 estens - Ul hochstens (Grad—1)
hochstens Grad

mindestens 1 und
hochstens (Grad—1)

Grad von
f(x)

gerade hochstens Grad
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Verhalten fiir betragsmiBig groBe x-Werte:

Leitkoeffizient von f(x)

grofer als 0 kleiner als O

ungerade| von —oo nach +oo| von 400 nach —co

gerade | von +oo nach +co| von —co nach —co

Symmetrie:

* Eine ganzrationale Funktion ist genau dann gerade, also achsensymme-
trisch zur y-Achse, wenn in der Funktion nur gerade Potenzen von x

vorkommen, also alle Koeffizienten vor ungeraden Potenzen von x sind
Null.

* Eine ganzrationale Funktion ist genau dann ungerade, also punktsymme-
trisch zum Ursprung, wenn in der Funktion nur ungerade Potenzen von x
vorkommen, also alle Koeflizienten vor geraden Potenzen von x sind Null.

6.4 Beispiel: Ganzrationale Funktionen vom Grad 3

Der Graph einer ganzrationalen Funktion f(x) = ax® + bx? + cx + d vom Grad
3 hat folgenden typischen Verlauf:

a>0 a<0

b > 3ac

b> = 3ac

b < 3ac




« Eine ganzrationale Funktion f(x) = ax® + bx?> + cx + d vom Grad 3 hat
hochstens dann mehr als eine Nullstelle, wenn sie zwei Extrema besitzt.

Das ist genau dann der Fall, wenn b? > 3ac ist.

* Zu jeder ganzrationalen Funktion f(x) = ax® + bx? + cx + d vom Grad 3

gibt es einen Punkt, sodass die Funktion punktsymmetrisch zu diesem ist:

_ 3 _ 2
dieser Punkt ist —b / 20" — abe + 27a7d
3 27a?

a
In diesem Punkt geht der Graph von einer Links- bzw. Rechtskrimmung
in eine Rechts- bzw. Linkskriimmung iiber.

6.5 Spezialfall: Die Potenzfunktionen

Als n-te Potenzfunktion bezeichnet man die spezielle ganzrationale Funktion
J(x) =x"

Fiir n = 1 erhdlt man f(x) = x und als Graph die Winkelhalbierende. Fiir
n = 2 erhilt man f(x) = x> und als Graph die Normalparabel.

Die Potenzfunktionen haben fiir n > 2 einen charakteristischen Verlauf:

n gerade n ungerade

Y| Y

6.6 Faktorisieren ganzrationaler Funktionen
6.6.1 Faktorisierung

Hat eine ganzrationale Funktion f(x) vom Grad n eine Nullstelle x = x1, also
f(x1) = 0, dann ldsst sich diese als Faktor (x — x1) abspalten.

Das bedeutet, es gibt eine ganzrationale Funktion g;(x) vom Grad n — 1,
sodass

fx)=(x-x1)-g1(x).
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Diesen Vorgang des Abspaltens kann man nun mit der ’Restfunktion’ g;(x)
wiederholen, bis die verbleibende ’Restfunktion’ keine Nullstelle mehr besitzt.
Diesen Prozess nennt man Faktorisieren und man gelangt so zu einem Produkt

f)=@-x) - (x—x2) ... (x —x) - gr(x)

mit g, (x) vom Grad n — r ohne Nullstellen.

Hat f(x) den Grad n und findet man nach und nach n Nullstellen, dann Iasst
sich f(x) vollstandig faktorisieren:

f)=an(x—x1) - (x=x2) ... (x =xp-1) - (x —x) .
Hinweise: Die Nullstellen miissen nicht unterschiedlich sein, sie konnen
mehrfach vorkommen. Man spricht dann von einer mehrfachen Nullstelle.

AuBerdem lasst sich nicht jede ganzrationale Funktion vollstiandig faktorisieren.
Das ist der Fall, wenn die Funktion weniger Nullstellen hat, als ihr Grad erlaubt.

Beispiele: (Es sind jeweils alle Nullstellen abgespalten)

I fx) =x+x-2=(x-1)(x+2)
2.8(x) =2x2+8x+8=2(x +2)(x +2) =2(x +2)?
3.h(x) =x*+x3 —x—-1=(x-DE+ D> +x+1)

4 k(x) =x*+x° =32 —x+2=(x-1)?(x+D(x+2)

Eine niitzliche Eigenschaft ganzzahliger Koeffizienten:

In dem Fall, dass alle Koeffizienten der ganzrationalen Funktion f(x) ganz-
zahlig sind und der Leitkoeffizient a,, = 1 ist, findet man alle ganzzahligen
Nullstellen als Teiler des y-Achsenabschnitts ay.

Achtung: Das bedeutet nicht, dass es keine weiteren Nullstellen geben kann!

7 Exponentialfunktion

7.1 Die allgemeine Exponentialfunktion »*

Als Basis der allgemeinen Exponentialfunktion sind nur positive reelle
Zahlen b > 0 zugelassen:

Jf(x) =b"

Definitionsbereich | D, = R

Wertebereich W, =R>"
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Monotonie: Die allgemeine Exponentialfunktion f(x) = b* ist fiir b > 1
streng monoton steigend und fiir » < 1 streng monoton fallend (fiir b = 1
erhilt man die konstante Funktion f(x) = 1).

7.2 Die Exponentialfunktion ¢*

Eine spezielle Rolle spielt die Basis e = 2,718281828459 . . . (Eulersche Zahl).
Die Funktion

J(x) =¢

hei3t Exponentialfunktion. Fiir die allgemeine Exponentialfunktion gilt dann

b* = eln(b)~x

Die Monotonie iibertrigt sich: Die Exponentialfunktion f(x) = e“™* ist fiir
¢ > 0 streng monoton steigend und fiir ¢ < 0 streng monoton fallend (fiir
¢ = 0 erhidlt man die konstante Funktion f(x) = 1).

7.3 Der Graph der Exponentialfunktion

Den Graphen der Exponentialfunktion zu einer Basis b < 1 erhilt man durch
Spiegelung des Graphen zur Basis % > 1 an der y-Achse, denn es gilt
) —X

b=

Ay

—2x 2x

S =
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7.4 Spezielle Eigenschaften von f(x) = p(x)e“~

Ist p(x) eine ganzrationale Funktion vom Grad n mit Leitkoeffizient a,,, dann
ergeben sich die Grenzwerte lim p(x)e“” am Rand des Definitionsbereiches
X

—+co

aus den folgenden Tabellen.

Der wichtige Spezialfall f(x) = ae“” ist darin enthalten: Man wihlt dazu
eine konstante Funktion p(x) = a, also p(x) mit Grad 0.

Verhalten der Funktionswerte fiir betragsmifig grofie x-Werte:

n gerade n ungerade
lim p(x)e* ||a,>0|a,<0| a,>0| a,<0
X—+00
c>0 +00 —00 +00 —00
c<0 0 0 0 0
n gerade n ungerade
lim p(x)e* ||a,>0|a,<0| a,>0|a,<0
X—>—00
c>0 0 0 0 0
c<0 +00 —00 —00 +00

8 Logarithmusfunktion

8.1 Die allgemeine Logarithmusfunktion

Die Umkehrfunktion der allgemeinen Exponentialfunktion heif3t allgemeine
Logarithmusfunktion. Fiir » > 0 schreibt man

f(x) =1log,(x)

Es gilt log, (b*) = b'°&™) = x sowie

Definitionsbereich | D/ = R>0
Wertebereich Wr=R

8.2 Die naturliche Logarithmusfunktion

Wie bei der Exponentialfunktion spielt auch bei der Logarithmusfunktion
die Basis e eine spezielle Rolle. Die zugehorige Funktion hei3t natiirliche
Logarithmusfunktion. Man schreibt fiir diese Funktion

J(x) =1In(x)
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mit In(e¥) = ™™ = x.

Man kann die allgemeine Logarithmusfunktion mit Hilfe der natiirlichen
Logarithmusfunktion darstellen:

log, (x) = ﬁ - In(x)

8.3 Der Graph der Logarithmusfunktion

Die Graphen zu den Basen » > 1 und % < 1 fallen bei Spiegelung an der
x-Achse ineinander, denn es gilt:

log, (x) = —log% (x).

8.4 Spezielle Eigenschaften von f(x) = p(x) In(x)

Ist p(x) eine ganzrationale Funktion vom Grad n mit Leitkoeffizient a, und

y-Achsenabschnitt a¢, dann ergeben sich folgende Grenzwerte an den Randern
0 und +oo des Definitionsbereiches

fall 0
lim p(x)In(x) = {+°° s dn >

—oo falls a, <0

—oo falls ag >0
lirr(l)p(x) In(x) = { +o00 falls ag <0
0 falls ag =0, also p(0) =0
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AuBerdem gilt

fim ) _
A )

9 Differentialrechnung

0 | falls der Grad von p(x) groBer als Null ist.

9.1 Differenzenquotient und Ableitung

Differenzenquotient f(x) = f(xo0)
= Sekantensteigung X —Xo
Ableitung , . f(x) = f(x0)
- : f"(x0) = lim
= Grenzwert des Differenzenquotienten x—x0 X — X
= Differentialquotient , . flxo+1) = f(x0)
. f'(x0) = lim
= Tangentensteigung t—0 t

9.2 Ableitungsregeln

Faktorregel f(x)=a-g(x) fl(x)=a-g(x)

Summenregel |f(x) =u(x)+v(x)|f (x) =u'(x) +0'(x)

Produktregel |f(x) =u(x) -v(x) |f'(x) =u'(x) - v(x) +u(x) - v'(x)

Quotientenregel | /(x) = u(x) f(x) = wix) - olx) - MZ(X) V)
v(x) (v(x))

Kettenregel f(x) = g(h(x)) f(x) =g (h(x)) - W (x)

Spezialfall der Kettenregel:

f(x)=glax+b) = f'(x) =a-g'(ax+Db)

G
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9.3 Tangentengleichung
Geradengleichung der Tangente an f(x) im Punkt P(xo/ f (x0)):

y = f(x0) - x + (f(x0) = f"(x0) - x0)

Diese heifit Tangentengleichung von f(x).

Tangente an f(x) durch einen Punkt Q(xo/yo):

Zur Bestimmung der Tangentengleichung an f(x) durch einen gegebenen
Punkt (xp/yg) setzt man x = xp und y = y¢ in die Tangentengleichung ein.
Das gibt eine Gleichung mit der Bertiihrstelle xg als unbekannte Grof3e. Diese
Gleichung 16st man auf und erhilt so eine Beriihrstelle xy (oder mehrere).

\A Yy
f(xo) = f'(x0) - o

Tangente an f(z) durch P und/oder Q
y = f'(x0) -z + f(20) — f(0) - 2o

Q(zq/yq)

flzo)t-—--=-=="="="="="=/~----

o

5
-

9.4 Monotonie
Ist f(x) auf dem Intervall / C R differenzierbar, dann gilt:

la) f'(x) = 0auf I/ < f(x) ist auf / monoton steigend

Ib) f’(x) < 0auf I & f(x) ist auf I monoton fallend

2a) f’(x) > 0auf I = f(x) ist auf I streng monoton steigend

2b) f'(x) < 0auf I = f(x) ist auf / streng monoton fallend
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9.5 Extrempunkte

Eine Stelle x = xo mit neutraler Steigung ist eine mogliche Extremstelle.
Das notwendige Kriterium fiir eine Extremstelle lautet damit:

f'(x0) =0

Ist f’(xop) = 0, dann lautet das hinreichende Kriterium fiir cin Maximum
(auch Hochpunkt) oder ein Minimum (auch Tiefpunkt):

f"(x0) <0 Max (xo/ f (x0))

f'(x0) =0 f"(x0) >0 Min (xo/ f (x0))

f”(x9) = 0| keine Entscheidung mdoglich

Im Fall f’(xg) = O (insbesondere, wenn zusétzlich f”(xg) = 0 gilt) kann
man mit dem Vorzeichenwechselkriterium fiir //(x) entscheiden, ob ein
Extremum oder ein Sattelpunkt vorliegt:

9.6 Wendepunkte

Eine Stelle x = xo mit neutraler zweiter Ableitung ist eine mogliche Wende-
stelle. Der zugehorige Punkt heil3t Wendepunkt.

In den Wendepunkten geht der Graph der Funktion von einer Links- bzw.
Rechtskriimmung in eine Rechts- bzw. Linkskriimmung {iber.

Die Wendepunkte einer Funktion f(x) sind genau die Extrema der Ableitungs-
funktion f’(x).
Das notwendige Kriterium fiir eine Wendestelle lautet damit:

f"(x0) =0
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Ist f”(xo) = 0 dann lautet das hinreichende Kriterium fiir einen Wendepunkt:

f"(x0) #0 WP (xo/ f (x0))
f"(x0) =0

f"(x0) = 0| keine Entscheidung méglich

Im Fall f”(x9) = O (insbesondere, wenn zusétzlich f”’(xg) = 0 gilt) kann
man mit dem Vorzeichenwechselkriterium fiir f”(x) entscheiden, ob ein
Wendepunkt vorliegt.

Spezialfall:

Ist f”(x0) = f”(x0) = 0 aber f”’(x) # 0, so ist (xo/f(x0)) ein Sattelpunkt

9.7 Schnitt von Funktionen/Zusammengesetzte Funktionen
9.7.1 Zusammengesetzte Funktionen

Eine Funktion f (x) heiflt zusammengesetzte Funktion, wenn sie auf verschie-
denen Bereichen ihres Definitionsbereiches durch zwei oder mehr Funktionen
beschrieben wird.

fr(x) fallsx > xg

Flx) = {fl (x) falls x < xg

Man sagt dann kurz: f(x) ist an der Stelle xy aus den Teilfunktionen f;(x)
und f>(x) zusammengesetzt. Die Stelle x( heillit Verklebungsstelle.

9.7.2 Schnittpunkt/Sprungfreiheit

Schnittpunkte:

Zwei Funktionen f(x) und g(x) schneiden sich, wenn ihre Graphen
sich schneiden.

Man erhilt den x-Wert eines Schnittpunktes als Losung der Gleichung

J(x) =g(x)

Den zugehorigen y-Wert erhdlt man durch Einsetzen in f(x) oder g(x).




Spezialfall: Die Nullstellen einer Funktion f(x) sind die Schnittpunkte des
Graphen von f(x) mit der x-Achse, also als Schnittpunkt von f(x) mit der
Funktion g(x) = 0. Man erhilt die Nullstellen als Losungen der Gleichung

J(x)=0

Sprungfreiheit:

fi(x) fallsx < xg ,
, heif3t
fr(x) fallsx > xg

an der Stelle x( sprungfrei zusammengesetzt, wenn

f1(xo) = fa(xo)

Ist eine der Funktionen an der Stelle x¢ nicht definiert (im obigen Beispiel
f1(x)), dann muss man den Funktionswert gegebenenfalls durch den Grenzwert
ersetzen (im obigen Beispiel lim fj(x)).

X—X(

Eine zusammengesetzte Funktion, etwa f(x) = {

Das ist z. B. nicht notwendig, wenn die Teilfunktionen durch Einschrankungen
der Definitionsbereiche konstruiert werden.

Zusammenhang zur Stetigkeit:

Eine an der Stelle x( sprungfrei zusammengesetzte Funktion ist an der Stelle
Xo stetig.

9.7.3 Beriihrung/Knickfreiheit

Beriihrpunkte:

Zwei Funktionen f(x) und g(x) beriihren sich, wenn ihre Graphen
sich schneiden und im Schnittpunkt die gleiche Steigung haben.

Man erhilt den x-Wert eines Berithrpunktes als Losung der Gleichungen

f(x) =g(x) und f"(x) = g'(x)

Den zugehorigen y-Wert erhilt man durch Einsetzen in f(x) oder g(x).
Knickfreiheit:

fi(x) fallsx < xg ,
, heif3t
fr(x) fallsx > xg

an der Stelle xo knickfrei zusammengesetzt, wenn

Ji(xo) = fa(xo) und f](xo0) = f;(x0)

Eine zusammengesetzte Funktion, etwa f(x) = {
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Ist eine der Funktionen an der Stelle x( nicht definiert (im obigen Beispiel
f1(x)), dann muss man die berechneten Werte gegebenenfalls durch die
Grenzwerte ersetzen (im obigen Beispiel lim f(x) und lim f](x)).

X—X( X—X(

Das ist z. B. nicht notwendig, wenn die Teilfunktionen durch Einschrankungen
der Definitionsbereiche konstruiert werden.
Zusammenhang zur Differenzierbarkeit:

Eine an der Stelle xo knickfrei zusammengesetzte Funktion ist an der Stelle xg
differenzierbar.

10 Integralrechnung

10.1 Stammfunktion

F(x) heiBt Stammfunktion von f(x) < F'(x) = f(x)

10.2 Bestimmtes Integral

Besitzt f(x) auf dem Intervall / die Stammfunktion F(x), dann ist f(x) auf /
integrierbar. Fiir a, b € I heiB3it

b b
/a F(x) dx = [F(x)]a = F(b) - F(a)

das (bestimmte) Integral von f(x) in den Grenzen ¢ und b.

b a
Insbesondere gilt / f(x)dx =— / f(x)dx
a b

10.3 Unbestimmtes Integral/Integralfunktion

Besitzt f(x) die Stammfunktion F'(x), dann schreibt man fiir das unbestimmte
Integral

F(x) =/f(x)dx.

Die mit Hilfe des bestimmten Integrals definierte Funktion

Fu(x) = / @ dr

heif3t Integralfunktion zu f(x) mit F,(a) = 0.
Die Integralfunktion F,(x) ist eine Stamnmfunktion von f(x), das heift:

Fa(x) = f(x).
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10.4 Intervalladditionsregel

Ist f(x) auf dem Intervall [ integrierbar, dann gilt fiir a, b, c € 1

/abf(x)dx:/acf(x)dx+/cbf(x)dx

10.5 Anwendung: Flachenberechnung

Mit A(f(x);a, b) wird der Flacheninhalt der Fliche bezeichnet, die vom Gra-
phen von f(x), der x-Achse und den Geraden x = a und x = b eingeschlossen
wird.

Mit A(f(x), g(x); a, b) wird der Flicheninhalt der Fldche bezeichnet, die vom
Graphen von f(x), dem Graphen von g(x) und den Geraden x = a und x = b
eingeschlossen wird.

10.5.1 Flacheninhalt zwischen Graph und x-Achse

b
f(x) > 0zwischen a und b | A(f(x), a, b) :/ f(x)dx

b
f(x) <0 zwischen a und b A(f(x),a,b):—/ f(x) dx

Ay




10.5.2 Flacheninhalt zwischen zwei Graphen

=

b
f(x) > g(x) zwischen a und b | A(f(x),g(x),a,b) = / (f(x)—g(x))d

b
f(x) < g(x) zwischen a und b | A(f(x),g(x),a,b) = / (g(x) - f(x))d

=

11 Ubersicht: Ableitungen und Stammfunktionen

f(x) J7(x) F(x)
x" n-x"1 n—}rl K+
1
- -— 1
x x2 n(x)
1 n 1
- > 1 — —
xn (n ) xh+l (n _ l)xn—l
e ae?r % e
1
In(ax) — x In(ax) + x
X
sin(ax) a cos(ax) —% cos(ax)
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cos(ax) —a sin(ax) % sin(ax)

12 Trigonometrie, Winkel- und Arkusfunktionen,
Schwingungen

12.1 Grundlegende Beziehungen am rechtwinkligen Dreieck

. a
sin@ =cosff = —
c
. b
cosa =sinf = —
c
a
tana = cotf = —
b
b C
cota =tanfB = —
a
. 9 ) sin Cos 1
sin“a+cos“a=1, tana = , cota = — =
Cos sin tana

12.2 Trigonometrie am Einheitskreis

Die Werte fiir Sinus bzw. Kosinus
erhilt man, indem man den zum Win-

kel gehorigen Punkt A des Einheits- / __________
kreises auf die y-Achse bzw. x-Achse

projiziert und abliest. 1

tan(«)

Die Werte fiir Tangens und Kotan-
gens ergibt sich als Liange der in der
Skizze angegebenen Projektionen.

Z | cos(a) B /B’

Durch die Interpretation der trigonometrischen Ausdriicke als Projektionen
am Einheitskreis erhilt man auf natiirliche Weise auch negative Werte.




12.3 Spezielle Werte und spezielle Symmetrien

Spezielle Symmetrien:

—a |a—90° | a+90° | a+180° | a+270° | a + 360°
sin(...) || —sina | —cosa | cosa | —sina | —cosa sin @
cos(...) || cosa | sina | —sina | —cosa sin @ cos
tan(...) || —tana | —cota | —cota | tana —cota tan @
cot(...) || —cota | —tana | —tana cota —tan cota

Spezielle Werte:
0 30° 45° 60° 90°
sin(..) || o | 4 | ¥ | B 1
cos(...) 1 g % % 0
tan(...) 0 ? — V3 -
cot(...) — V3 1 g 0

Mit Hilfe der Symmetrien erhilt man spezielle Werte fiir weitere Winkel.

12.4 Additionstheoreme

Die Werte der trigonometrischen Ausdriicke fiir Summen und Differenzen
von Winkeln lassen sich mit den Additionstheoremen berechnen:

sin(a + B) =sina - cos 8 + cosa - sin 3

cos(a £ f3) =cosa - cosB Fsina - sinf

tan « + tan 8

t + =
an(a £ £) l Ftana - tan B
Spezialfille:
sin(2a) = 2sina - cos « cos(2a) = cos? @ — sin® @
2tan
tan(2a) = ———
(2a) 1 — tan? «
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Mit Hilfe des trigonometrischen Pythagoras sin” « + cos
Definitionen fiir Tangens und Kotangens erhilt man folgende quadratischen

Beziehungen:

2 2

sin” «

Cos™

tan2 o

cot2 0%

1 — cos?

1 — sin?

1
cot? o
1
tan? o

tan? o 1

@ = 2 = 2
1 +tan® « 1 +cotc

1 cot? @

@ = 2 - = 2
1 +tan® « 1 +cotc
sin? a 1 —cos?a

1 —sina cos? a

1 —sina cos? a
sin? @ 1 —cos?a

12.5 Beziehungen am allgemeinen Dreieck

Sinussatz

a:b:c=sina:sinf:siny
a b c

sina sinf siny

Kosinussatz

a® = b*+c? - 2bccosa

b* = a®+¢? = 2accos B

c? =a’+b*-2abcosy

12.6 Beziehung zwischen Winkel und Bogenmaf

Man kann jeden Winkel ¢ eindeutig durch die Lange des zugehorigen Bogens
auf dem Einheitskreis beschreiben und umgekehrt. Diese Lange x heil3t

Bogenmal und es gelten die folgenden Beziehungen:

G

a = 1 und den




o 180°
~180° 7 =

X X

Diese Formeln gelten uneingeschrankt auch fiir Winkel groBer als 360° und
fir Winkel kleiner als 0°, z. B.

@ || =360° | =90 | 0° | 30° | 45° | 60° [ 90° | 135° | 180° | 720°
m T 3
9 _- ol i
; " 17219 5 4

Vg 4

ST

IS
SR

12.7 Winkelfunktionen

Die Projektion am Einheitskreis ergibt z. B. fiir den Sinus zwischen 0° und
360° folgende Werte:

_____ sin(p) fiir 0° < ¢ < 360°

Nach Ubergang vom Winkel zum Bogenmal und Erweiterung auf x-Werte klei-
ner als Null und groBer als 27 erhilt man die Graphen der Winkelfunktionen
(auch trigonometrischen Funktionen):

cos(ﬂf/k sin(z) /><
AN

—TT ~

o3

0
2
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tan(z) cot(z)

12.8 Anwendung: Die Beschreibung von Schwingungen

Schwingungen spielen in vielen technischen und physikalischen Anwendun-
gen eine groBe Rolle. Als Beispiel seien hier mechanische Schwingungen
genannt, die in ihrer einfachsten Form durch Feder- oder Fadenpendel realisiert
werden. Ebenso bilden Schwingungen eine Grundlage der Untersuchung von
Wechselstromkreisen in der Elektrotechnik.

7 | T: Periodendauer (in s)
T , -
S Frequenz (in ;)
w=2nf w: Winkelgeschwindigkeit / Kreisfre-

-1
quenz (in )

A(t): Auslenkung zur Zeit ¢
A(t) = Ag-sin(wt+¢)| Ap: Maximale Auslenkung / Amplitude

¢: Phasenverschiebung




Ao 1

SRS

_Aoq

13 Komplexe Zahlen mit Anwendungen

13.1 Die grundlegende Identitat der komplexen Zahlen

Komplexe Zahlen sind Zahlen der Form

z=a+j-b

mita, b € R.
Die zusitzliche Zahl j heilt imaginire Einheit! und fiir sie gilt

JP=-1
Bezeichnungen:
Realteil vonz =a+j - b Re(z) =a
Imaginirteil vonz =a+j - b Im(z) =b

'Neben der im Text und in technischen Anwendungen verwendeten Bezeichnung j gibt
es die in der mathematischen Literatur verwendete Bezeichnung i der imaginéren Einheit.
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13.2 Darstellung komplexer Zahlen

Trigonometrische Schreibweise | z =|z|- (cos¢ + j - sing)
(Polarkoordinatenschreibweise)
Dabei gelten die folgenden Beziehungen:
Im ()
lz| = \/Re + Im ( ) ¢ = arctan =
Re ()
Spezialfille:
J

13.3 Konjugiert komplexe Zahl

Koordinatenschreibweise

(GauBsche Schreibweise)

Eulersche Schreibweise

(Exponentialschreibweise)

Zu einer komplexen Zahl z gibt es die konjugiert komplexe Zahl z*:

A Im
z z
I =b+--—---=-=====- z=a+j-b
a+j-b|la—-j-b m(z) I g
|
|Z| el ® |Z‘ ce )Y 2] :
i —_ |
® | Re
+ e
2.2 = Re(z) = a
o 45
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13.4 Rechnen mit komplexen Zahlen

Addition und Z+w z-w
Subtraktion
z=a+j-b (a+c)+j-(b+d) (a=c)+j-(b-d)
w=c+j-d

AIm

ztw=(a+c)+j-(b+d)

Multiplikation
und Division

|2
IS

izzacijjlzl (ac —bd)+j-(ad+bc) 2.
= |Z| el ¥ |Z| : |w| .ol () ﬂ o) (=)
il o I
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Spezialfall:

L—Z* mit
Ef

i

4
z=a+j-b a -J- b
= a*+ b? a + b?
g=|§‘.er0 ﬁ.e—j'w

2

13.5 Formel von Moivre und komplexe Wurzeln

Die komplexe Zahl z = r - (cos ¢ + j - sin ¢) hat die komplexen Potenzen

7' =r" (cos(ng) + j - sin(ng))

Spezialfall » = 1: Die Formel von Moivre

(cos + j - sin)" = cos(np) + j - sin(nyp)

Die Gleichung w" = z hat n unterschiedliche Losungen, die komplexen
Wurzeln. Fir k£ =0,1,...,n — 1 sind das:

{fz= (/F(cos%%r

+Jj-s

. 2
mL"”)
n

G
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Spezialfall: Die n-ten Einheitswurzeln

€n.k = COS 2"7”

+ j - sin

2kn

n

fur

k=0,1,..

on—1.

Die Einheitswurzeln liegen (ausgehend von e, o = 1) symmetrisch auf dem
Einheitskreis verteilt, z. B.

e n=2: 62,021, 62’1:—1
*n=3 eo=1e1=—5+j 5, e20=—3-J %
cn=4 e=1, es1=J, ean=-1, e43=-j

€31

€2.0

€32

€41

€43

13.6 Anwendung: Widerstande im Wechselstromkreis

Bezugsgrofie: U=U=U -e/!
Verwendete Bezeichnung: w = 27 f mit Frequenz f der Spannungsquelle

0 u_u
Ohmscher I=1=1 ¢ R:T:7
Widerstand keine Phasenverschie- =
—F (R bung zwischen Strom
und Spannung
oo . o x U .
Kapazitiver I=j-1=1-¢2 _C=7=—] Xc=Xc-e2
Widerstand Strom eilt Spannung =
_”_ (C) um 90° voraus Xc = e
wC
. . U x
Induktiver I=—j-I=1-¢772 ﬁz?z]-XL—XL-eJZ
Widerstand Strom eilt Spannung =
WA (L) um 90° nach Xp=wl
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Widerstinde Z einfacher Serienschaltungen

, @ = arctan (%)

Bezeichnungen: Z = \Z

4 Z ¢
— - R-j-Xc JR2+ X3 arctan (—%)

e R+j- X JR?+X? arctan(3L)

W= j- (XL - Xc) XL - Xc +90°

W R+ j - (X, — Xc) | VR2+ (X1 — Xc)?| arctan (2£35€)

Widerstinde Z einfacher Parallelschaltungen,

1
Z

N|~—

arctan(— X—RC)

arctan (X%)

F_
ik
ET i (ze-x%) - £90°
§i}

2
\/% + (% - +-)" | arctan (£ -

Im
Im Im
| Xr X
Im !
Z 1
X N e
1
1 1
1 Z I
R Re @ X Re v Re » : Re
¥ X R R
1
X¢ 7 | Xc Xe
1
1

Die Zeigerbilder der Parallelschaltungen nutzen statt der Widerstandswerte Z
deren Kehrwerte %
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14 Analytische Geometrie

14.1 Darstellung von

Vektoren

Als Vektor © bezeichnet man einen Représentanten der Menge aller Pfeile
gleicher Linge und gleicher Richtung.

in der Ebene im Raum
v o1
Komponenten U= (Ul) v=|0
2
eines Vektors v3
aj
—> a] —>
Ortsvektor 0A = (a ) 0A =|as
des Punktes A(ai/a») 2 as
bzw. A(ai/a>/a3)
b1 —ai
. -_— b1 —ai =
Verbindungsvektor AB = b — a AB =|by—as
2—az
zweier Punkte A(ai/a») b3 - a3
und  B(bi/by) bzw.
A(al/ag/ag) und
B(b1/b2/b3)

14.2 Vektorrechnung I: Addition, Subtraktion, skalare Multiplika-

tion
in der Ebene im Raum
U1 w1
oo . - N U1 w1 = N
Addition, Subtraktion | v+ w = (U ) + (w ) vrw=|v|t|lw
2 2
U3 w3
von Vektoren vy £ Wy
= (== /]
Uy £ Wy
=l xw
U3 £ wj3
U1 S 01
. . . - Ul A Ul -
Skalare Multiplikation| s - v = s - (U ) = (S ” scv=s5-lv;|=|s-1
2 )
mits € R U3 § 03

» Zwei Vektoren v und w heifen linear abhéngig (oder kollinear), wenn es
eine Zahl s gibt, sodass v = s - w.
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* Mehr als zwei Vektoren vy, 0, ..., 0, heilen linear abhingig, wenn es
Zahlen sy, 53, ..., s, gibt, die nicht alle Null sind, sodass
S1 ~51+52-52+...+sn°vn:0.

 Sind Vektoren nicht linear abhéngig, dann heiflen sie linear unabhingig.

1,00

i~

—0,57

14.3 Vektorrechnung ll: Betrag, Skalar- und Kreuzprodukt, Winkel

Zwei Vektoren, die am gleichen Punkt starten, schlieBen einen Winkel @ mit
0° < a < 180° ein. ]

in der Ebene im Raum

Linge/Betrag  eines||3] = V(01)2+ (12)2  |[5] = V(01)2 + (02)2 + (13)2

Vektors

Skalarprodukt zweier| Do w = vy -wy +vy - wa| Vo = vy -w+0y - Wr+03 w3
Vektoren

U1 w1

Kreuzprodukt/Vektor- IXW= (vz X | wo

produkt zweier Vekto- U3 w3
ren (02-w3—v3-w2
=|03-W1 —0V1 W3

U1 -W2 — U - W]

|

Sl

o

<

Von zwei Vektoren v, | @ = arccos (
eingeschlossener Win-
kel

vow )

s——= || @ = arccos (
0] - [w|

S

=i
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Normalenvektor 7 zu
zwei Vektoren v und

S
Il
<
X
Sl

Statt v o w sind auch v - w und (v, w) geldufige Bezeichnungen fiir das
Skalarprodukt.

Skalarprodukt Kreuzprodukt/Normalenvektor
0]
1 oxd
(0% U X
|| - cos S Tow ni
] L] -

14.4 Darstellungen von Geraden

in der Ebene im Raum
Parameterform g: xX(t)=a+t-v g: x(t)=a+t-v
einer Geraden g mit — (4] 4 (O ai U]
Aufpunktvektor’ g und az U2 =lax|+i-| 2
Richtungsvektor v as U3
Koordinatenform g:a-x+b-y=d
einer Geraden g
2Statt Aufpunktvektor sagt man auch Stiitzvektor.
52 (J
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14.5 Darstellungen von Ebenen im Raum

im Raum

Parameterform

-

E: X(t,s)=a+t-v+s-Ww

einer Ebenen E mit
Aufpunktvektor a und
Normalenvektor

a
n=\b
c

wobeid =noa

einer Ebene £ mit ai ] wi
Aufpunktvektor g und =lax|+t-|v2]+s-|w2
Richtungsvektoren © as U3 w3
und w

Koordinatenform E:a-x+b-y+c-z=d

Normalenform

einer Ebenen E mit
Aufpunktvektor g und
Normalenvektor 7
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14.6 Abstande im Raum

a
Ebenen: E:a-x+b-y+c-z=d Wobeiﬁz(b)
c

F:X(t,s)=a+t-01+s-0»

Geraden: g: X(t)=é+t-w, h:X(t)=f+t-i

Punkt: P(p1/p2/p>) mit Ortsvektor p = 0P
Konstellation Abstand
w X (e—
Punkt/Gerade d(P,g) = | (# p)|
d(P,g) |
Punkt/Ebene d(P,E) = |ap1 *bpateps - dl - |ﬁoﬁ_ d|
d(P,E) Va? + b? + 2 |ﬁ|
bx (&~ f
Gerade/Gerade d(g,h) = | (# f)| (parallel)
d(g, h) ] R
wXu)o (e—
d(g,h) = |( 3 E f)i (windschief)
| x i
54 ®
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Ebene/Ebene parallel d(E,F) =
d(E,F)

Woe—di
Gerade/Ebene parallel | d(g,E) = —
(g, E) i

|r_i od— d|

—_—— .."

I e
F—
I
I
I
| d=|d - ] cos(p)
| |iio (@)
l 7|
I
I
f
14.7 Lotpunkte, Lotgerade
| - d-poin
Ortsvektor des Lotpunktes von P mit| p + FE n
— - - - n
OP=paufE:xXxon=d
N, (P-d)ov
Ortsvektor des Lotpunktes von P mit| a + oE v
— v
OP=paufg:X(t)=a+tv
- d - C_i o ﬁ - - - -
Parameterform der Lotgeraden von (a + e n) +1((Ux 1) X 1)
n

g:x(t)y=a+tvin E:Xon=d

G
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14.8 Gegenseitige Lage von Geraden und Ebenen

14.8.1 Gegenseitige Lage Gerade/Gerade

g1 :X(t) =G+t und g2 :X(t)=b+td

(o identis09
@ @1 )

<Ja>——(@-b)x5=0

1, 8> echt paralle

7 @1, g> besitzen
<% KSchnittpunkt
@ (G-b)o ([T xid) =0
1, g2 windschie}

14.8.2 Gegenseitige Lage Gerade/Ebene

1

2/

ST
[l
)
Sl

¢:X(t)=ad+t3 und E:¥(t,s)=b+1td) + s

@ @in E enthalte§
<Ja>— (@ - b) o (b X itn) =0

, E echt paralle)
Nei g, E besitzen
“n Schnittpunkt
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14.8.3 Gegenseitige Lage Ebene/Ebene

E :%(t,s)=d+t0+s0» und Ey:%(t,s)=b+tid +sid

@ @1 ,Eo identisc@

<Ja>—{ (@~ b) o (i) x i) = 0

1, E, echt paralle
— (51 XI_))z) X (17)1 le)z) =0
Qe (El, E> besitzen
“n KSchnittgerade

15 Statistik

15.1 Absolute und relative Haufigkeit statistischer Daten

1

2/

Im Folgenden sind x1, x», . . ., x; die unterschiedlichen Werte einer n-elemen-
tigen Datenmenge; insbesondere ist n > k.

Die Zahl n heiffit Umfang der Datenreihe.

k
Absolute Haufigkeit H; Z H=H+H,+...+H,=n

des Wertes x; i=1

= Anzahl von x; in der

Datenmenge
H |

Relative Hiufigkeit| ;= — Z hi=hi+hy+...+h =1
n "

des Wertes x; i=1
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15.2 Statistische Streu- und LagemaBe
15.2.1 Mittelwerte, Varianz und Standardabweichung

Ein wichtiges LagemaB ist der arithmetische Mittelwert. Das zugehorige
Streumal ist die Varianz bzw. deren Quadratwurzel die Standardabweichung:

Stat. Mittelwert / arithme-| X = Summe aller Werte/n

tischer Mittelwert 1 & k
= —ZHi-xi = Zhi'x,'
n :
i=1 i=1
| & k
Stat. Varianz o= - 21] Hi- (xi—%)2 = z; hi - (x; — %)
1= 1=

Stat. Standardabweichung | o = Vo2

Weitere Mittelwerte:
Geometrischer Mittelwert |Xq, = YProdukt aller Werte
(Daten positiv) _ (/xfl -xglz . .kak _ xin,xézz,‘ ' -.xlilk

Harmonischer Mittelwert | X, = n/Summe aller Kehrwerte
(Daten # 0) _ n _

15.2.2 Median, Quartile und Interquartilabstand

Den Median bestimmt man, indem man die Daten inklusive sich wiederho-
lender Daten der Grof3e nach sortiert, also y; < y2 < ... < yu1 < yu:

Median ymed = Der Wert, fiir den die Halfte aller Datenwerte
links von ihm und die andere Halfte rechts von
ithm liegen

_ JYms falls n ungerade
- %(yg + y%“) , falls n gerade

Kennt man den Median, dann hat man die Datenreihe in zwei Hélften zerlegt.
Dabei wird der Median —falls der Umfang n der Datenreihe ungerade ist—
weder zur unteren noch zur oberen Hilfte gezahlt.
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Die Mediane der oberen und unteren Halfte der Datenreihe liefern ein zum
Median passendes Streumal. Die beiden zugehorigen Werte bezeichnet man
als Quartile. Genauer:

unteres Quartil | yqu.— = Median der unteren Hilfte der Datenwerte

oberes Quartil Yquart+ = Median der oberen Hilfte der Datenwerte

Grob kann man sagen, dass die Quartile und der Median die Datenreihe in vier
Viertel unterteilen. Das untere Quartil ist der obere Wert des unteren Viertels
und das obere Quartil ist der untere Wert des oberen Viertels einer Datenreihe.
Damit liegen zwischen unterem Quartil und Median und zwischen Median
und oberem Quartil jeweils ein Viertel der Datenreihe.?
Als Interquartilabstand bezeichnet man die Differenz

IQR =y quart+ — Yquart—

Der IQR gibt die Breite des Bereichs um den Median an, in dem sich die
Hilfte aller Werte der Datenreihe befinden.

16 Kombinatorik

16.1 Fakultat und Binomialkoeffizient

Fakultat n'=1-2-3-...-(n=1)-n
'
Binomialkoeffizient me__ n
r|  kl(n-r)!

Spezialfall: | 0! =1
Eigenschaften des Binomialkoeffizienten:

[)-(")
A e e i

SDer Begriff Quartil ist im Gegensatz zum Median in der Literatur nicht eindeu-
tig festgelegt. Wendet man statt der hier verwendeten Definition die Beschreibung aus
https://de.wikipedia.org/wiki/Empirisches_Quantil an, dann kann es zu leichten Abweichun-
gen der berechneten Werte kommen.
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16.2 Urnenmodell

Ein Urnenmodell besteht aus einer Urne mit n Kugeln. Aus dieser Urne
werden auf verschiedene Arten Kugeln gezogen. Dabei kann es eine Rolle
spielen, in welcher Reihenfolge man die Kugeln zieht und ob man die Kugeln
nach dem Ziehen zuriicklegt.

In der folgenden Tabelle ist die Anzahl der jeweils moglichen Ziehungen
angegeben.

» Alle Kugeln haben die gleiche Farbe. Es werden r-Kugeln gezogen:

ohne Zuriicklegen mit Zuriicklegen
(ohne Wiederholung) | (mit Wiederholung)

n!

mit Reihenfolge ' (nPr) n
(Variationen) (n—r)!
-1
ohne Reihenfolge (n) (nCr) (n T )
(Kombinationen) 4 d

Spezialfall r = n: Es werden mit Beachtung der Reihenfolge und ohne
Zuriicklegen alle Kugeln gezogen. Die Anzahl der moglichen Ziehungen
1st

n!

Man spricht von Permutationen.
* Die Kugeln besitzen ¢ unterschiedliche Farben.
Die Kugeln mit der Farbe i tritt m;-mal auf, d. h. m{ + my + ... + my = n.

Es werden alle n Kugeln unter Beachtung der farblichen Reihenfolge ohne
Zuriicklegen gezogen. Die Anzahl der moglichen Ziehungen ist

n!

mi!-my! ... -myg!

17 Grundlagen der Wahrscheinlichkeitstheorie

17.1 Wahrscheinlichkeit von Ereignissen

Ein Elementarereignis oder Ergebnis ¢; ist ein Element der Ergebnismenge
Q={er,er,...,e,}.
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pi = P(e;) bezeichnet die Wahrscheinlichkeit des Elementarereignisses
e; € Q.

Summenregel fiir Elementarereignisse: p; +p>+...+p, =1

Als Ereignis E bezeichnet man eine Teilmenge der Ergebnismenge:
E = {eil,...,eik} cQ

Damit ist ein Ereignis E ein Element der Potenzmenge von Q, also E € P (Q).
Eine Menge moglicher Ereignisse bezeichnet man als Ereignisraum & C
P (), wenn

e Qe&

e MitE € Eistauch E € &

e Mit Ey,Ey,Ez... € &istauch E{ UE,UE3U ... €&

Ist E = {e;,, €j,,...,e; } ein Ereignis, dann ist die

Wahrscheinlichkeit von E: P(E) = p; + pi, + ...+ pi,

Dabei gilt immer [0 < P(E) <1

Das Gegenereignis zum Ereignis E ist E = Q\ E.Esgilt | P(E) =1 - P(E)
Rechenregeln fiir Ereignisse E, F C Q:

P(EUF)=P(E)+P(F)-P(ENF)| |P(E\F)=P(E)-P(ENF)

17.2 Laplace-Experimente, Laplace-Formel

Q = {ey,ez,...,e,} ist die Ergebnismenge eines Laplace-Experiments,
wenn jedes Elementarereignis die gleiche Wahrscheinlichkeit hat, also

1
pi=-
n

Diese Wahrscheinlichkeit heil3t die Laplace-Wahrscheinlichkeit des Laplace-
Experiments.

Fiir ein Ereignis E eines Laplace-Experiments gilt:

Anzahl der Ergebnisse in E

Laplace-Formel: P(E) =

Anzahl aller Ergebnisse in




17.3 Baumdiagramm und Pfadregel fiir mehrstufige Zufallsexpe-
rimente

Mehrstufige Zufallsexperimente lassen sich mit Hilfe von Baumdiagrammen
beschreiben.

Beispiele fiir ein Baumdiagramm eines zweistufigen Zufallsexperiments:

N
P(E12)

E, Enn| P(EiNEp)=P(E)) - P(E)

N

Ei3| P(E\NE;3) =P(Ey)-P(En)

y Eyi | P(ExNEy) =P(E) - P(Ey)
P(Ezz)

E, Ex»n| P(Ex;NExn)=P(E;) - P(Ex)

23)
\ Ex3| P(Ey;N Ey) =P(E;) - P(Ep)

Rechenregeln im Umgang mit Baumdiagrammen (die Beispiele beziehen
sich auf das obige Baumdiagramm):

/
F,

>

o

®

Erste Vollstiindigkeitsregel |Die Wahrscheinlichkeit der Aste jeder Stufe
addieren sich zu 1

Pfadmultiplikationsregel Entlang eines Pfades werden die Wahr-
scheinlichkeiten multipliziert

Pfadadditionsregel Die Wahrscheinlichkeit vollstindiger Pfade
werden addiert

Zweite Vollstandigkeitsregel |Die Wahrscheinlichkeiten aller vollstandi-
gen Pfade einer Stufe addieren sich zu 1

17.4 Bedingte Wahrscheinlichkeit, Vierfeldertafel, abhangige und
unabhangige Ereignisse

Py (F) Wahrscheinlichkeit des Ereignisses F unter der Bedingung,
dass zuvor das Ereignis E eingetreten ist
(Bedingte Wahrscheinlichkeit)
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Darstellung mit Baumdiagramm Darstellung mit Vierfeldertafel

B _[EnF
E(F _
& \) ENF ll il
° 4y o E |P(ENF)|P(ENF)|P(E)
Y i Pj% EQF] | £ |p(EnF)|PEnF)|PE)
£ % — P(F) | P(F) | 1
_P(ENF) . P(ENF)
PE(F)—W PE(F)_—P(E)
. _PENF) = _P(ENF)
PE(F)_—P(E) PE(F)——P(E)

Satz von der totalen| p(F)=pP.(F)-P(E) + Pz(F) - P(E)
Wahrscheinlichkeit

Pg(F) - P(E
Satz von Bayes Pr(E) = E(P)(F) (E)
Unabhiingigkeit der Er- P(ENF)=P(E)-P(F)

eignisse £ und F

E, F unabhiingig &< E, F unabhingig
& Pg(F)=Pp(F)=P(F) < Pr(E)=Pp(E)=P(E)

17.5 Zufallsvariablen, Erwartungswert, Varianz, Standard-
abweichung

17.5.1 Zufallsvariablen

Eine Zufallsvariable (auch: ZufallsgroBe) X eines Zufallsexperiments mit
der Ergebnismenge € ist eine Abbildung

X: Q- R
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Sie ordnet jedem Elementarereignis e € Q eine Zahl X (e) € R zu.

Im folgenden sei die Wertemenge von X endlich, etwa Wy = {x,x2,...,x,}.
Das ist etwa der Fall, wenn Q = {e, e, ..., e,} selbst endlich ist. Dann ist
insbesondere r < n.

Man schreibt X~ (x) = {e € Q| X(e) = x} fiir die Menge der Elementarer-
eignisse, die durch X auf x € R abgebildet werden.

Die Wahrscheinlichkeitsfunktion P(X) der Zufallsvariablen X : Q — R ist
eine Abbildung

P(X): R —[0,1]

Sie ordnet der Zahl x den Wert P(X = x) = P(X " (x)) zu.
Insbesondere ist P(X = x) = 0, wenn x ¢ Wy, also wenn x durch X gar nicht

getroffen wird. Es gilt
Z P(X=x) =1

xeR

Zwei Zufallsvariablen X und Y heilen unabhiangig, wenn
P(X=x,Y=y)=P(X=x)-P(Y=y) firalle x,yeR

17.5.2 Erwartungswert, Varianz, Standardabweichung

Mit der Wertemenge Wy = {x, xs,...,x,} der Zufallsvariablen X gelten
folgende Bezeichnungen:

r

Erwartungswert von X E(X) = Z xi - P(X =x;)
=1
l}"

Varianz von X V(X) = Z(xi —E(X))*-P(X =x;)
i=1

Standardabweichung von X |0 (X) = yV(X)

Beziehung zwischen Varianz und Mittelwert:

V(X) = E(X?) - E(X)?




18 Spezielle Wahrscheinlichkeitsverteilungen

18.1 Bernoulli-Experimente, Bernoulli-Kette und Binomialvertei-
lung

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit einem zweielemen-
tigen Ergebnisraum Q = {pos, neg} mit P(pos) = p, P(neg) =q=1-p.
Fiihrt man ein Bernoulli-Experiment n-mal durch, so erhélt man eine Bernoulli-
Kette der Linge n.

Dies liefert die Zufallsvariable XZn.r:

XBnr = Anzahl des Ergebnisses pos in der Bernoulli-Kette der Linge n

Die Zufallsvariable XZ».» nimmt die Werte O, 1, ..., n an und man schreibt
P(XBnr = k) = B, ,(k). Fiir diese Wahrscheinlichkeitsfunktion gilt:

By ,(k) = (n)pkq”‘k

k
! Bip(F)
0.16 -
0.12 — B
1
0.08 n=30.p= 3
0.04 2
k
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75>
B, heilt Binomialverteilung.
Ihr Erwartungswert, ihre Varianz und ihre Standardabweichung sind:
E(XB"’P) =np V(XB"’P) =npq S(XB"’P) =+/npq

18.2 Normalverteilung und Standardnormalverteilung

Eine Zufallsvariable X"V« mit Werten in R heiBt (u, o)-normalverteilt,
wenn

N 1 X _e-w?
P(X"mo <x) =@y 5(x) = > / e 202 dt
VZT O J—




Der Integrand ¢, ~(x) heilt Dichte der (u, o )-Normalverteilung ®, - (x)

2
1 = Do)

¢M,O' (x) =

2rn o

Erwartungswert, Varianz und Standardabweichung der (u, o-)-Normal-
verteilung:

E(XNuo) = u V(XNuo) = g2 S(XNwo) = o

Die (1, 0)-Normalverteilung heiflt Standardnormalverteilung:

D(x) = Dy p(x) ¢(x) = ¢1,0(x)

Es gilt

O, (x) = cb(x—) "1

buo ) = ~o(* L)

-3 2 A

Eigenschaften der (u, o-)-Normalverteilung

P(XNwe >+ R) = P(XNwe < u—R) = D, (1 —R)
P(XNwe <+ R) = P(XVuo > y—R)=1-®, ,(u—-R)
P(XN”’U <) = (Dy,(r(,u) = %

P(|XNeo —pu| <R)=P(u—-R < XVur < y+R) =1-2®,,(u—R)
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Ist X eine (ux,ox)-normalverteilte und Y eine (uy, oy)-normalverteilte
Zufallsvariable und sind X und Y unabhingig, dann sind

Z=aX+b (apx + b, acx)-normalverteilt

und

Z=X+Y (,ux + Uy, \10'}2( + 0'1% )—normalverteilt.

18.3 Wichtige Beziehung zwischen Binomial- und Normalvertei-
lung

Die (n, p)-Binomialverteilung, lasst sich durch eine (u, o-)-Normalverteilung
anndhern, wenn mit g = p — 1 die

Moivre-Bedingung npg > 9

erfullt ist.

In diesem Fall ist u = np und o = \/npq zu wihlen, so dass beide Verteilungen
den gleichen Erwartungswert und die gleiche Standartabweichung haben; z. B.
n=150,p = %, also u =np =25und o = \npqg = 4,6:

A
0.12

0.08

0.04

[« )}

Niherungsformel:
P(ky < XBnr < ko) = P(ky — 0,5 < X"¥wo < ky +0,5)

also

ko
D Bup(k) % @y (ka +0,5) = Dy (k1 = 0,5)
k=kj

Spezialfille der Niherungsformel:
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o P(XBrr = k)~ ®, ;(k+0,5) - D, (k—0,5)
o P(XBnr < k)~ @, (k+0,5) - ®,,(-0,5)
* P(XBrr > k) » @, 5(n+0,5) — @, ,(k—0,5)

19 Hypothesentests

19.1 Nullhypothese, Gegenhypothese und Fehlerarten

Hy bezeichnet in diesem Abschnitt stets die Nullhypothese und H; die
Gegenhypothese.

Wirklichkeit
Hy wahr H{ wahr
Hy wird abgelehnt Fehler 1. Art D .
H; wird angenommen a-Fehler richtige Entscheidung
Hy wird angenommen Fehler 2. Art

richtige Entscheidung

H; wird abgelehnt B-Fehler

In den folgenden Hypothesentests ist

* stets der Annahmebereich (auch Konfidenzbereich) gesucht,

* wobei eine gewisse Irrtumswahrscheinlichkeit (auch Signifikanzniveau)
a vorgegeben ist.

Wird die Wahrscheinlichkeit durch die Normalverteilung angenéhert, dann
kann man die Breite des (symmetrischen) Annahmebereichs in Vielfachen
{-o der Standardabweichung angeben.

Dabei gelten mit

Plu—to < XNuo <u+l-o)=1-a

also
Do — o) = % oder |®yo(~0) = % oder |®o(f) =1- %
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folgende niitzliche Beziehungen:

1—ay

@y

1—05

@y

0,683 (68,3%)

0,317 (31,7%)

1,64

0,900 (90%)

0,100 (10%)

0,954 (95,4%)

0,046 (4,6%)

1,96

0,950 (95%)

0,050 (5%)

0,997 (99,7%)

0,003 (0,3%)

2,58

0,990 (99%)

0,010 (1%)

3,29

0,999 (99,9%)

0,001 (0,1%)

19.2 Hypothesentests

19.2.1 Linksseitiger Hypothesentest (H, : p > po, H1 : p < po)

Nullhypothese Gegenhypothese Signifikanz
Hoy:p > po Hy:p <po @
Annahmebereich:
X > g; | mit linker Grenze g; aus | P, (X < g1) =«

Entscheidungsregel fiir die Stichprobe X:

Hy wird abgelehnt, wenn X < g;

19.2.2 Rechtsseitiger Hypothesentest (H, : p < po, H1 : p > po)

Nullhypothese Gegenhypothese Signifikanz
Hy:p < po Hy:p>po @
Annahmebereich:
X < g, |mit rechter Grenze g, aus | Pp, (X > g,) = @

Entscheidungsregel fiir die Stichprobe X:

Hy wird abgelehnt, wenn X > g,
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19.2.3 Beidseitiger Hypothesentest (Hy : p = po, H; : p # po)

Nullhypothese Gegenhypothese Signifikanz
Hy:p=po Hy:p# po a
Annahmebereich:

g1 <X <g | mitg;graus| Py (X > g, = % und P, (X < g1) :%

Entscheidungsregel fiir den Stichprobenwert Xo:

Hy wird abgelehnt, wenn Xy < g; oder Xy > g,

19.3 Beispiele: Annahmebereiche fiir spezielle Zufallsvariablen

Im Folgenden sind X, X1, ..., X, jeweils (n, p)-binomialverteilte, unabhéngi-
ge Zufallsvariablen, die durch die gleiche Normalverteilung mit yux = np und

ox = +/np(l — p) angendhert werden.

- 1
Dann lassen sich das Stichprobenmittel X = —(X; +...+ X,) und die
n

1
relative Haufigkeit /2 = —X ebenfalls durch Normalverteilungen annihern.
n

Deren Erwartungswerte und Standardabweichungen sind:

ox
Hx = Hx =np, 0'72%2\/17(1—17)

1_
und =X oy o= T [p(l-p)
n n n

Damit lassen sich (fiir einen beidseitigen Test) folgende symmetrische Annah-
mebereiche angeben:

fiir X : P(|X—np|£€-\/np(1—p))Sl—a,
fiir X P(|Y—np|§€-\/p(1—p))Sl—a,

|h—p|$€-\/@)sl—a

a
5

fir A : P

Dabei berechnet sich € aus

D10)(0) =1~
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20 Zahlentheorie

20.1 Teilbarkeit, Primzahlen und Faktorisierung

In diesem Abschnitt sind alle Zahlen ganze Zahlen.

Teilbarkeit (a # 0)

nteilta < n|a
= Es gibt eine Zahl k, sodassa =k - n

Teilt n die Zahl a, dann heif3t n ein Teiler von a

7 (a) bezeichnet die Teilermenge von a

ggT ggT(a, b) = groBter gemeinsamer Teiler der Zah-
len a, b
ggT(a, b) = max (7 (a) N T (b))
Teilerfremdheit a, b heilen teilerfremd, wenn ggT(a, b) =1
D. h. a und b haben keinen gemeinsamen Teiler
auBler 1
Primzahl p > 1 heillit Primzahl, wenn p nur die Teiler 1 und
p hat, also wenn 7 (p) = {1, p}
Primfaktor- Jede Zahl a > 0 besitzt eine eindeutige Zerlegung
zerlegung in Primfaktoren, d. h. es gibt (nicht unbedingt ver-

schiedene) Primzahlen pq, p», ..., p,, sodass

a=py-p2:... Pr

20.2 Reste, Euklidischer Algorithmus

Rest Sind a und n > 0 Zahlen, dann gibt es eine Zahl k
und eine Zahl r € {0, 1,...,n — 1} so dass
a=k-n+r
r hei3t Rest von a beim Teilen durch »n
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Euklidischer r.i=b,ro=a
Algorithmus Fiir i > 1: falls r,_; # O bestimme k; und r;, sodass
fii
iir ggT(a. b) ri-g = ki-riy +r;
b>a>0
Der Algorithmus bricht stets ab, da die Reste in
jedem Schritt kleiner werden.
Hat man m Schritte benétigt, d. h. r,,, = 0, so ist
ggT(a, b) der Rest des vorletzten Schritts, also
geT(a,b) =rm-
erweiterter Zu zwei Zahlen a und b gibt es Zahlen k, £, so dass
euklld.lscher k-a+€-b=geT(a,b)
Algorithmus

Man erhilt diese Darstellung von ggT(a, b) etwa, indem man die Gleichungen
aus dem Euklidischem Algorithmus in jedem Schritt auflost und die zwei
letzten nutzt, um sie im folgenden Schritt einzusetzen.

Beispiel: a =460, b = 158:

460 =2 - 158 + 144 [—|144 = 1-460 ~2 - 158

158=1-144+14 |>f 14=1-158—1-144
=1-158—1-(1-460-2-158)

=3.158 —1-460

144=10-14+4 |- 4=144-10-14
=1-(1-490-2-158) ~ 10 - (3- 158 - 1 460)
=11-460-32-158

14=3-4+(2| |5 2=14-3-4

= (3-158-1-460) -3 (11-460 - 32 - 158)
=99 158 — 34 - 460

Das gibt:
geT(460,158) =2 und 2=99 158 -34-460.

72 ’



20.3 Restklassen und Restklassenrechnung

Haben zwei Zahlen beim Teilen durch die Zahl n > 1 den gleichen Rest, so
sagt man

a und b gehoren zur gleichen Restklasse modulo »

oder

a und b sind kongruent modulo »

und man schreibt

a=bmodn

In diesem Fall ista = k- n+r und b = € - n + r fiir den gleichen Rest r €
{0,1,...,n—1}.Insbesondereistdanna = b = r modnund a—b = 0 mod n.

Fiir die Restklassenmenge schreibt man | Z, = {0,1,...,n—1}|.

Rechenregeln fiir das Rechnen in der Restklassenmenge 7,;:

amodn +b modn = (a +b) modn

amodn-bmodn = (a-b) modn

a, b sind zueinander multiplikativ invers modulo n
<= a-b=1modn

Die multiplikativen Inversen in 7Z,,:

Ist a # 0 mod n, dann gibt es ein multiplikatives Inverses
modulo n, wenn ggT(a,n) = 1, d. h., wenn @ und n nur
den gemeinsamen Teiler 1 besitzen.

Spezialfall:*

Ist p eine Primzahl, dann findet man zu allen a mit p 1 a
ein multiplikatives Inverses.

4b + a bedeutet: b ist kein Teiler von a.
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20.4 Eulersche ¢-Funktion und der Satz von Euler-Fermat

¢(n) = Anzahl der Zahlen in {1,...,n — 1},
Eulersche ¢-Funktion die mit » nur den gemeinsamen Tei-
ler 1 haben.

Rechenregeln fiir die Eulersche ¢-Funktion:

o(p)=p-1 fiir eine Primzahl p

e(pF) =pt(p-1) fiir eine Primzahl p

@(m-n) =@(m)-o(n) |wenn ggT(m,n) =1

Besitzt n die Primfaktorzerlegung n = pi* - p5* - ... - p;", so gilt:

go(n)zn(l—%)-(1—1%2)-...-(1—%)

Satz von Euler-Fermat

a®™ = 1modn wenn ggT(a,n) =1
Spezialfall:
a’~!' = 1 mod p wenn p prim und p £ a

20.5 Anwendung: Die RSA-Verschliisselung

Die RSA-Verschliisselung ist ein sogenanntes asymmetrisches Verschliis-
selungsverfahren, da zum Verschliisseln und Entschliisseln einer Nachricht
unterschiedliche Schliissel verwendet werden.

Die RSA-Verschliisselung bendtigt drei Parameter N, e, d € Z mit folgenden
Bedingungen:

Wahl der Zahlen N | N = p - g fir zwei Primzahlen p, q

e | ggT(o(N),e) =1
d |e-d=1modg(N)
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(e, N) heif3t offentlicher Schiissel | | (d, N) heifit geheimer Schiissel

Durchfiihren der RSA-Verschliisselung

Originaltext Verschliisselter Text | Entschliisselter Text
A B A

A = Bmod N B? = A modN

Zusammenfassender Fahrplan fiir die RSA-Verschliisselung

Schritt 1:

Schritt 2:

Schritt 3:

Schritt 4:

Schritt 5:

Man wihlt zwei Primzahlen p und g und berechnet damit
N=p-q.

Man berechnet ¢(N) = (p — 1)(¢ — 1) und bestimmt eine
Zahl e mit ggT (e, (N)) = 1.
—> Offentlicher Schliissel (e, N).

Man berechnet d aus dem Faktor vor e im erweiterten eukli-
dischen Algorithmus fiir e und ¢(N): k- e+ € - o(N) = 1.
Ist 0 < k < ¢(N), dann wihlt man d = k, andernfalls
addiert/subtrahiert man ¢(N) so oft zu/von k, bis der Wert
die gewiinschte Eigenschaft hat: das ist dann d.

—> geheimer Schliissel (d, N).

Man verschliisselt eine Originalnachricht A zur codierten
Nachricht B, indem man A¢ = B mod N berechnet.

Man entschliisselt eine codierte Nachricht B zur Original-
nachricht A, indem man B¢ = A mod N berechnet.

Schritt 5 des Fahrplans klappt wegen B¢ = (A°)¢ = A°? = A mod N

21 Matrizen und Determinanten

21.1 Matrizen

Eine Matrix ist ein rechteckiges Schema von Zahlen, d. h. die Eintrige der
Matrix sind in Zeilen und Spalten angeordnet.
Eine Matrix mit m Zeilen und n Spalten heilit m X n-Matrix. Ist m = n so
spricht man von einer quadratischen Matrix.

G

75



Spezialall:
4

Ein Vektor im Raum, z. B. | —1 |, kann als 3 X 1-Matrix interpretiert werden.
2

Die einzelnen Komponenten einer Matrix werden mit der Zeilen- und Spalten-
zahl nummeriert. Eine m X n-Matrix B hat dann m - n Komponenten b;; mit
i=1,...,m, j=1,...,nund man schreibt B = (b;;).

Beispiel:
_2—13_b11 b12b13_ N
B‘(4 7 —8)_(1921 by b23)_(b”)

also
b11=2, b12=—1, b13:3, b21:4, b22:7, b23:_8

Die n x n-Einheitsmatrix FE, ist die Matrix, bei der die Eintrige auf der
Diagonalen alle Eins sind und alle weiteren Eintrage Null, z. B.

1 00
E;=(01 0 Ezz((l) (1))
0 01

21.2 Matrizenrechnung I: Addition, Subtraktion, skalare Multipli-
kation
Addition und Subtraktion

Matrizen mit der gleicher Spalten- und Zeilenzahl kann man addieren und
subtrahieren. Dies geschieht komponentenweise:

A= (a,-j), B = (b,'j) — C=A+B-= (C,'j) mit Cij = ajj b,’j

Skalare Multiplikation

Matrizen kann man mit einer Zahl multiplizieren. Dies geschieht komponen-
tenweise:

A=(aij),a/e]R=>B:a/-A:(bij)mitbijzcmij

21.3 Matrizenrechnung II: Matrixmultiplikation

Matrixmultiplikation

Zwei Matrizen lassen sich multiplizieren, wenn die Spaltenzahl des ersten
Faktors mit der Zeilenzahl des zweiten Faktors iibereinstimmt: Ist A =
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(@if)iz1....m:j=1...n €in€ m X n-Matrix und B = (b;;),_

Matrix, dann ist C = A - B = (cij)._, . eine m X k-Matrix mit

omyj=1,,

n

Cij = ailblj + aizsz +...+ Clmbnj = Z a,'gbgj
=1

Visualisierung:

’ B : 3 x 4-Matrix

bi2 | b1z bia

by | bz b

b3y ) b3z b3

Ci2 | €13 Cu14

€2 | €23 (€24

|A: 2x3-Matrix |C = A-B:2x4-Matrix

21.4 Determinanten kleiner Matrizen

Die Determinante ordnet einer quadratischen Matrix A eindeutig eine Zahl
det(A) zu.
Die Determinante einer 2 X 2-Matrix

a1 a2

ap an
det( ) =aj;-ax—app - a

Die Determinante einer 3 x 3-Matrix
ap apz a3

Die Determinante einer 3 X 3-Matrix |az; az» a»3 | kann man mit der
asy azy ass

Sarrus-Regel berechnen:
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Dazu schreibt man die ersten beiden Spalten der Matrix neu rechts neben die
Matrix. Dann berechnet man die Produkte der Diagonalen, um die Ergebnisse
anschliefend nach folgendem Schema zu addieren oder zu subtrahieren:

- + -
a ax a3 ai ap

a axp» ax a axy
as; azm ay Az axn

ail a2 ais
det|az1 ax ax3|= aj1-axp-asxz+ap-ax-az+apz-az -axp
asy azy ass

—dj] -d3 a3z —dj2 - dz) - dzz —dj3z - a - dsl

Eigenschaften der Determinante:
* Besitzt eine Matrix A eine Zeile oder eine Spalte, die nur Nullen enthilt,
dann ist det(A) = 0.

* Besitzt eine Matrix A zwei gleiche Zeilen oder zwei gleiche Spalten, dann
ist det(A) = 0.

¢ Die Determinante entscheidet, ob eine Matrix invertierbar ist, oder nicht,
sieche Abschnitt 22.1:

A istinvertierbar <= det(A) #0

22 Lineare und affine Abbildungen mit Hilfe von Matri-
zen

22.1 Grundlegende Eigenschaften und inverse Matrix

Eine n X m-Matrix A ordnet jedem Vektor X € R™ einen Vektor A - X € R”
zu.

A definiert somit eine lineare Abbildung, d. h. A : R™ — R” mit

A-G+y)=A-F+A-5| und [A-(@-D)=a (A7)

Eine Matrix A kann hochstens dann eine bijektive lineare Abbildung beschrei-
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ben, wenn A quadratisch ist, also m = n.

Ist A quadratisch und die zugehorige lineare Abbildung bijektiv, dann heifit A
invertierbar. In diesem Fall gibt es die inverse lineare Abbildung und fiir ihre
zugehorige Matrix schreibt man A~!. Diese Matrix heifit die inverse Matrix
zu A.

Ist A eine invertierbare n x n-Matrix, dann ist auch A~! invertierbar mit
(A™1H)~1 = A Es gilt

A-A'=AT.A=E,

Die zu A inverse Matrix A~ lisst sich mit Hilfe des (erweiterten) Gauf3-
Algorithmus bestimmen:

1. Man schreibt A und die Einheitsmatrix E, nebeneinander:

(AlEy)

2. Man fiihrt GauB3-Schritte an A so lange durch, bis Dreiecksform
erreicht ist. Gleichzeitig fiihrt man die selben Schritte an der Ein-
heitsmatrix durch. Das gibt dann

(NIB)

3. Man fiihrt so lange weitere GauB3schritte an der Dreiecksmatrix “\|
durch, bis diese in die Einheitsmatrix umgeformt ist. Gleichzeitig
fihrt man die selben Schritte an der rechten Matrix B durch. Das

gibt dann
(En|A7")
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Beispiel:

A= E;=
1[4 2 1|1 0 0

mij2 2 1|0 1 0

arfftr 1 00 0 1

It 1 00 0 1 111
0 -2 -1{1 -2 0| I-2-1I
arjfo o 1|0 1 =2|11-2-11
It 1 0|1 0 0

{0 -2 0|1 -1 =2| II+III
arjfo o 1{o0o 1 -2

1|1 0 0|3 -3 Of I+3-11
mjjo 1 o|-3 &+ 1| -3-1I
arfo o 1,0 1 -2

= E; =A"!

Mit Hilfe der inversen Matrix lassen sich lineare Gleichungssysteme 16sen:

Ist A invertierbar, dann hat das LGS A - ¥ = b fiir jede rechte Seite b genau
eine Losung, nimlich X = A~ - b.

22.2 Eigenwerte und Eigenvektoren

Ist A eine quadratische nxn-Matrix, dann heifit der Vektor v € R” Eigenvektor
und die Zahl 1 Eigenwert von A, wenn

A-0=21-0

aipr a2

Ist A =
a; ax

Losungen der quadratischen Gleichung

eine 2 X 2-Matrix, dann erhélt man die Eigenwerte als

A% — (aj +an)d + (aj1an — apaz) =0

Eine 2 X 2-Matrix hat hochstens 2 unterschiedliche Eigenwerte.

Ist A ein Eigenwert von A, dann erhilt man die Eigenvektoren als Losungen
des LGS

(A—1-E,)-X=0
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Beispiele:
* Sind v und w Eigenvektoren zum selben Eigenwert A, dann ist auch
a -0+ B-w fiir o, B € R ein Eigenvektor zu A.
 Die Eintrage einer Diagonalmatrix sind die Eigenwerte dieser Matrix.

e Die Eintrage der Diagonale einer Dreiecksmatrix sind die Eigenwerte
dieser Matrix.

* « ist der einzige Eigenwert der speziellen Diagonalmatrix « - E, und alle
Vektoren sind Eigenvektoren.

22.3 Streckung, Drehung, Spiegelung und Scherung im R?

Streckung um den Faktor o mittels Ay = (a 0)
Streckmatrix A,

Drehung um den Winkel ¢ gegen den D, = (

cos(p) — sin(go))
Uhrzeigersinn mittels Drehmatrix D,

sin(¢) cos(yp)

_ 2"% 20102
2, .2 2,2
. v7+U vi+v
Spiegelung an der Ursprungsgeraden S; = 12 ! 222
20102 Vi
. . - U1 . _ 1
mit Richtungsvektor v = mittels vi+v3 vi+v3

2
Spiegelungsmatrix S;

Scherung entlang der x-Achse (oder y-| 7T, = (1 a) s Tya= (61, (1))
Achse) mit Scherfaktor a # 0 mittels
Schermatrix 7 , (oder 7}, )

Eigenwerte dieser Abbildungen:

* A, = a - E; hat den Eigenwert « und alle Vektoren sind Eigenvektoren.

* D, hat nur (reelle) Eigenwerte, wenn ¢ = 0 mit D = E> oder ¢ = 180°
mit Dgpc = —E>. In beiden Fillen sind alle Vektoren Eigenvektoren.

e S () hat die Eigenvektoren +1 mit Eigenvektor (Z;) und —1 mit Eigenvektor
Cor)-

* Ty« und T, , haben beide nur den Eigenwert 1. Zugehorige Eigenvektoren
sind ((1)) fiir Ty, , und ((1)) fiir 7y 4.
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Wichtige Beispiele:

D450 = (

Ry =

s
S

Sl

0 -1 -1 0
Dope = (1 0 ) D g0 = ( 0 _1)

-1 0 0 =l
0 —1) R(?):(o 1) R(*ﬂ):(il 0)

—_
(==Y
)

22.4 Affine Abbildungen

Eine affine Abbildung f : R?> — R? ist eine Hintereinanderausfiihrung einer
linearen Abbildung mit Matrix A und einer Verschiebung um den Vektor b:

f(R)=A-%+b

Wichtige Eigenschaften:

b=L(f@+r(-3) b= £(0)
A-G=-P=f@-fG| A-Z=fF-f0)

Sind f(¥) = A-X+bund g(¥) = B - X + &, dann ist

f(g®)=A-B-Z+(A-C+b)

Eine affine Abbildung f(X) ist invertierbar, wenn die Matrix A eine inverse
Matrix A~! besitzt. Dann ist

l@=Aa"1-3-4"1b

Abbildungseigenschaften invertierbarer affiner Abbildungen im R?:
Sind P’, Q’, R’ die Bilder der Punkte P, Q, R unter einer affinen Abbildung,
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dann gilt:

* Liegen P, Q, R in dieser Reihenfolge auf einer Geraden, dann gilt das
auch fiir P',Q’, R’.

» (' teilt die Strecke P’R’ im gleichen Verhiltnis wie Q die Strecke PR.

* Der Mittelpunkt einer Strecke wird auf den Mittelpunkt der Bildstrecke
abgebildet.

e Bilden P, O, R ein Dreieck, dann auch P’, Q’, R’.

* Durch die Bilder der Ecken eines Dreiecks ist eine affine Abbildung
eindeutig festgelegt.

 Bilder paralleler Geraden sind wieder parallele Geraden.

22.5 Beispiel: Drehung um ein Drehzentrum

Eine Drehung um den Winkel @ gegen den Uhrzeigersinn bei gegebenem
Drehzentrum M (m/m;) wird durch die affine Abbildung

_(m cos(¢) —sin(yp) X n
fx1,x2) = (m;) + (sin(go) cos(¢p) ) ‘ ((x;) B (m;))

beschrieben.

Dabei ist il der Ortsvektor des Urbildes (x1/x») und f(x1, x») der Ortsvektor
2

des Bildpunktes (x//x}) nach der Drehung um den Punkt M:

A

4\
(2 /23)
X

Y




23 Logik
23.1 Grundbegriffe der Logik

Eine logische Aussage A ist ein sprachlicher Satz oder eine mathematische
Gleichung, der man eindeutig einen Wahrheitswert zuordnen kann.

Die moglichen Wahrheitswerte sind wahr (w oder 1) und falsch (f oder 0).
23.2 Logische Verknupfungen und ihre Wahrheitswerttabellen

Zusammengesetzte Aussagen lassen sich mit Hilfe spezieller logischer Ver-
kniipfungen beschreiben.

Héufig verwendete Verkniipfungen heif3en:

Negation Konjunktion |Disjunktion| Implikation
NOT, NICHT | AND, UND | OR, ODER |IMPLY, FOLGT
- A \Y —
Bikonditional (Kontravalenz| Exlusion Rejektion
EQUIV, AQUIV XOR NAND NOR
o Y A v

Sprachlich sind diese z. B. durch folgende Beschreibungen gegeben:

e —A ist nur dann wahr, wenn A falsch ist

e A A B ist nur dann wahr, wenn A und B beide wahr sind

e A V B ist nur dann falsch, wenn A und B beide falsch sind

e A — B ist nur dann falsch, wenn A wahr und B falsch ist

e AV B ist nur dann wahr, wenn entweder A wahr oder B wahr ist

Der Wahrheitswert einer zusammengesetzten Aussage ist eindeutig durch die
Wahrheitswerte der Aussagen bestimmt, aus denen sie zusammengesetzt ist.

Deshalb reicht es aus, die zusammengesetzte Aussage mit Hilfe ihrer Wahr-
heitswerttabelle anzugeben.

Wahrheitswerttabellen der hiufig verwendeten Verkniipfungen:

A B |-A|AAB|AVB|A—>B|A<-B|AVB|AAB|AVB
1 1 0 | 1 | 1 0 0 0
1 0 0 0 1 0 0 1 | 0
0 1 1 0 1 1 0 1 1 0
0 0 1 0 0 | 1 0 | 1




23.3 Logische Aquivalenz

Zwei zusammengesetzte Aussagen heillen logisch dquivalent, wenn sie die
gleiche Wahrheitswerttabelle haben.

Beispiele logisch dquivalenter Aussagen:
e Aund —|(—|A)
* AANBund =(—=AV =B)

A|B|AAB|=A|=B|—-AV =B |—=(=AV-=B)
1|1 1 0|0 0 1
110 0 0|1 1 0
01 0 1 |0 1 0
00 0 I |1 1 0

* AV Bund =(=A A =B)
* A-Bund AV B
e AoBund (A —» B) A (B — A)

Logische Ausdriicke lassen lediglich die zwei Wahrheitswerte O und 1 zu.
Daher liegt es nahe, logische Verkniipfungen mit Hilfe elektrischer Schaltungen
zu realisieren, welche selbst auf dem bindren Prinzip (EIN, AUS) oder (hohes
Potential, niedriges Potential) basieren.

Dabei kann es sinnvoll sein, so wenig ’Grundschaltungen” wie noétig zu
verwenden. Es bleibt somit die Frage, wie viele logische Verkniipfungen man
benétigt, um alle weiteren durch logische Aquivalenzen zu erzeugen.

Es zeigt sich, dass sehr wenig Verkniipfungen ausreichen — es reicht sogar
eine einzige:

Alle logischen Verkniipfungen lassen sich allein mit Hilfe von
e —, A und V darstellen.
* — und A darstellen.
e - und V darstellen.
* V darstellen.

e A darstellen.

Beispiele dquivalenter Verkniipfungen:

e - Aund AAAund AV A
* ANBund (AAB)A(AAB)und (AVA)V (BVB)
* AVBund (AAA)A(BAB)und (AVB)V (BVA)
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23.4 Anwendung: Realisierung mit Hilfe elektronischer Schaltun-
gen

Einginge |1 :’Schalter EIN’ oder "Messpunkt auf hohem Potential’
A,B 0 : ’Schalter AUS’ oder ’Messpunkt auf niedrigem Potential’

Ausginge |1 :’Lampe EIN’ oder "Messpunkt auf hohem Potential’

Lampe,Y |0 : ’Lampe AUS’ oder "Messpunkt auf niedrigem Potential’
Beispiele:
Verkniipfung NOT - AND A OR Vv
[ AN
+ y ® + A B
Schaltbild (Gatter)| — | - B - LJ
® ®
1 A— & A— =1
Schaltsymbol | A—] Oo—Y B— — Y| g —Y
Verkniipfung NAND A NOR Vv
° +
I ) : AN B\ ®
Schaltbild (Gatter)| ®
B\
A— & A— =1
Schaltsymbol | __ O—Y B Oo—Y
86 ®

G



24 Duales und hexadezimales Zahlensystem

24.1 Dezimalzahlen, Dualzahlen und Hexadezimalzahlen

Eine Zahl 7 € N stellt man im Dezimalsystem mit Hilfe seiner Ziffern dar:
7=...24723222120 Wwobei z;€{0,1,2,3,4,5,6,7,8,9}.

Kennt man die Ziffern z, z1, 22, 23, 24, . . ., dann erhilt man die Dezimalzahl
z, iIndem man diese ausrechnet:

2=20-100+7; - 10"+ 2, - 10> + 73 - 10> + 24 - 10* + . ..

Beispiel: z = 3098 besitzt die Ziffern z0 = 8,21 =9,z =0und z3 =3

Die Darstellung einer Zahl mit Hilfe von Ziffern nennt man Stellenwertsystem
(hier: beziiglich der Basis 10).

Statt der Basis 10, kann man jede andere Basis verwenden, um eine Zahl
darzustellen. Folgende Stellenwertsysteme sind insbesondere in der Informatik
sehr wichtig:

Dualsystem (Basis 2) Hexadezimalsystem (Basis 16)
z=dy-2°+d; - 2" +dy - 22 z2=ho-16° + hy - 16" + hy - 162
+dy-23+dy 2%+ .. +hy- 163+ hy - 16+ ...

d; € {0,1} hi €{0,1,2,3,4,5,6,7,8,9, A, B,
C,D,E,F}

Hier stehen die Dualziffern 0O, 1 fiir die Zahlen 0, 1 im Dezimalsystem und die
Hexadezimalziffern O,...,9, A, ..., F fir die Zahlen O,...,9,10,...,15
im Dezimalsystem.

Beispiele:

e Im Dualsystem hat die Zahl z = 3098 die Darstellung 110000011010, also
die Ziffern dy = 0,dy = 1,d, = 0,d3 = 1,ds = 1,ds = de = d7 = dg =
d9 = 0, le =1 und d11 = 1, weil

3008=0-20+1-2"+0-22+1-22+1-2*+0-2°+0.2°
+0-2740-2240-224+1.21041.2U

* Im Hexadezimalsystem hat die Zahl z = 3098 die Darstellung C1A, also
die Ziffern ho = A, hy = 1 und hy, = C, weil

3008 =10-16°+1-16"' +12 - 162

* z =0 hat in allen drei Stellenwertsystemen die gleiche Darstellung 0.
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24.2 Umrechnung dezimal < dual < hexadezimal
24.2.1 Umrechnung dual/hexadezimal — dezimal

Liegt eine Zahl im Dualsystem ... d3d>ddy oder im Hexadezimalsystem
... h3hohihg vor, erhilt man die Zahl im Dezimalsystem, indem man sie
berechnet:

z=do-20+d1-21+d2-22+d3-23+...
2=ho- 16" +h; - 16" + hy - 16>+ h3 - 10° + . ..

(siehe Beispiele aus Abschnitt 24.1).

24.2.2 Umrechnung dezimal — dual

Die Umrechnung einer Dezimalzahl in eine Dualzahl geschieht mit einem
Algorithmus, der lediglich die Halbierung von Zahlen benotigt:

Algorithmus: (fiir Zahlen groBer als 0)

Beginn: ag =z

Schritt Falls a; gerade, setzt man a;.; = a;/2und d; =0
chritt:
Falls a; ungerade, setzt man a;4; = (a; — 1)/2und d; = 1

Ende aq;=1

Beispiel: z = 3098 ist dual 110000011010

il 0 | 1 2|34 (5[/6[7[8]9/10|11

a; || 3098 | 1549 | 774 | 387 [ 193 |96 (48 |24 |12|6| 3 | 1
di||l O 1 0 1 I 10100 [O0(f0O]1]1

24.2.3 Umrechnung hexadezimal — dual

Weil 16 = 2% ist, wird jede Hexadezimalziffer /; zu einem Block von vier
Dualziffern da;, dait1, daiv2, dais3.
Die Dualziffern des entsprechenden Blocks bestimmt man z. B. mit dem
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Algorithmus aus Abschnitt 24.2.2, und erhalt:

0{0000| |4(0100| | 8 |1000| | C |1100
1{0001| |5(0101| {91001 | D |1101
2(0010| [6|0110| |A|1010| | E| 1110
3(0011| |7(0111| [B|1011| [ F |1111

Beispiel: C1A wird zu 1100.0001.1010 (Punkte nur zur Hervorhebung der
Viererblocke)

24.2.4 Umrechnung dual — hexadezimal

Man teilt zunéachst die Dualzahl von hinten beginnend in Viererblocke auf
(dazu fillt man den vorderen Block ggf. vorne durch Nullen auf).

Dann berechnet man die Dezimalzahl, die zu dem entsprechenden Block
gehort (Abschnitt 24.2.1). Diese liegt zwischen 0 und 15. Das liefert die
entsprechende Ziffer in der Hexadezimaldarstellung.

Alternativ verwendet man die Tabelle aus Abschnitt 24.2.3.

Beispiel: 110000011010 besitzt (von hinten) die Blocke 1010, 0001 und
1100 die den Zahlen 10, 1 und 12 entsprechen, sieche Abschnitt 24.2.1. Das

sind die Ziffern A, 1 und C im Hexadezimalsystem. Die gesuchte Zahl ist
damit C1A.

24.2.5 Umrechnung dezimal — hexadezimal

Fiir eine rechnerisch effektive Umrechnung stellt man die Dezimalzahl zunéchst
dual dar (Abschnitt 24.2.2). Anschliefend wandelt man die erhaltene Dualzahl
ins Hexadezimalsystem um (Abschnitt 24.2.4).

24.3 Anwendung: Rechnen mit Dualzahlen, Halb- und Volladdierer

Man kann zwei Dualzahlen addieren, indem man, wie bei Dezimalzahlen,
das Stellenwertsystem nutzt.

Man benotigt dazu die folgenden elementaren Summen:
0+0=1,1+0=1,0+1=1,14+1=10, 1+1+1=10+1=11.

Man beginnt bei der Addition zweier Zahlen mit den Ziffern der letzten Stellen.
Ist das Ergebnis O oder 1, dann notiert man dies als letzte Ziffer der Summe.
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Ist das Ergebnis 10, dann notiert man die O als letzte Ziffer und die 1 liefert
den Ubertrag zur niichsten Stelle.

Beispiele:
1. Summand 01011 01111
2. Summand 01010 01001
Ubertrag 1 1 1111
Summe 10101 11000

Realisierung mit Hilfe logischer Schaltungen:

Halbaddierer zur Addition zweier einstelliger Dualzahlen mit Hilfe von
NAND-Gattern:

E&o—z

(die Summanden A und B geben das Ergebnis ZY)

Volladdierer zur Addition dreier einstelliger Dualzahlen mit Hilfe zweier
Halbaddierer und einem OR-Gatter:

A—{ HA HA S
B— >1 )

] — 0,
U

(die Summanden A, B und U, geben die Summe U,S)
24.4 Anwendung: 4-Bit-Operationen

Eine Hexadezimalziffer entspricht einer vierstellige Dualzahl (einen Nibble).
Damit lassen sich Daten, die vier-Bit-codiert sind, als Hexadezimalziffer
darstellen.

Auf Hexadezimalziffern lassen sich logische Operationen anwenden, indem
man diese komponentenweise auf die 4-Bit-Darstellung anwendet.
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Dies ist komponentenweise auf k-stellige Hexadezimalzahlen und damit auf
4k-Bit-Werte erweiterbar.

NOT lasst sich ohne 4-Bit-Darstellung darstellen: | -x = F — x |.
F — x kann man berechnen, indem man zunichst F und x als Dezimalzahlen
darstellt und die Differenz 15 — x anschlieend wieder als Hexadezimalzahl.

Beispiele:

e =3 ==(0]0|1|1) = (=0|=0|=1]=1) = (1]1|0]0) = C oder -3 =F-3=C
« AANT=(1]0[1]0) A (O]1|1]1) = (1 AOJOAT|T AT|OAT) = (0]0]1]0) =2
* BV5=(1|0|1]1) V (0]1]0]1) = (1 VO|OV 1|1 VO|]1V1)=(0]0]0]0) =0
* Die vollstindige Tafel fiir NAND:

IANNOJT]2]3]4[5[6]7[8]9]|A|B|C[D[E|F]
OF|F|F|F|F|F|F|F|F|F|F|F|F|F|F]|F
T|FIE|F|E|F|E|F|E|F|E|F|E|F|E|F|E
2||F|F|D|D|F|F|D|D|F|F|D|D|F|F|D|D
3| FIE|D|C|F|E|D|C|F|E|D|C|F|E|D]|C
A|F|F|F|F|B|B|B|B|F|F|F|F|B|B|B|B
5| F|E(F|E|B|A|B|A|F|E|F|E|B|A|B|A
6||F|F|D|D|B|[B|9|9|F|F|D|D|[B|B|9]9
7| F|E|D|C|B|A|9|8|F|E|D|C|B|A|9]8
|| F|F|F|F|F|F|F|F|7|7]7|7|7[7]7]7
OF|E|F|E|F|E|F|E|7]|6|7|6|7[6]|7]6
A|F|F|D|D|F|F|D|D|7|7|5|5|7[7[5]5
B|F|E|D|C|F|E[D|[C|7|6]|5|4]|7|6]|5]4
CI|F|F|F|F|B|B|[B|[B|[7[7|7|7|3|3|3]|3
D|F|E|F|E|B|A|B|A|[7]|6|7(6]3]|2|3]2
E|F|F|D|D|B|B|9|9|7|7]5]|5]|3[3]1]1
F|FIE[D|C|B[A[9|8|7|6]|5|4[3[2]1]0

25 Flacheninhalt und Umfang von Flachen
A : Flacheninhalt, U : Umfang,




25.1 Quadrat, Rechteck, Parallelogramm, Trapez, Raute, Dreieck

Quadrat Rechteck Parallelogramm Dreieck
b
C
' ’ / fa b hq
a a a a
A = a? A=ab A=ah, Az%aha
U =4a U=2(a+b) U=2(a+b) U=a+b+c
Trapez Drachenviereck
g
c />\
@©
d I b 7
a b
a
A=1
A=Ya+c)h 2ef
U=za+c+b+d U=2(a+b)
e = a2 + b2 — 2ab cos(B)
2ab sin(fB)
f=—

25.2 Kreis, Kreisring, Kreisausschnitt, Kreisabschnitt

Kreis Kreisring Kreisausschnitt

7
A
/Y T
I
1
\

¥ ]
_ 2 _ 2 _ 2 2 ¢
A=nr A=n(R"—-r°) A = arozgy
U=2nr U=2n(R-r) U=2r+¢
_ ¢
5—271'7’@
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Kreisabschnitt

A= ﬂr2% — %rz sin()

U=2s+{¢
€=27rr%60
s = rsin (%)

26 Volumen und Oberflachen von Korpern

V . Volumen,

M : Mantelflache,

O : Oberflache.

26.1 Wirfel, Quader, Prisma, Pyramide, Pyramidenstumpf

Wiirfel Quader allgemeines Prisma
- ‘
S th
a e
V=ad V=abc V=Gh
O = 64> O =2(ab +ac + bc)

G
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quadratische Pyramide

V= %azh
M = aV4h? + a2
O=da*+M

s = w/hz+%az

quadratischer Pyramidenstumpf

\ &
e

V=1(a®+ab+b*h
M = (a + b)\4h? + (a — b)?
O=a’>+b*+M

s = \[l2+ (a - b)?

allgemeine Pyramide

allgemeiner Pyramidenstumpf

V=

‘h

e

1
1Gh

V=1(G,+VG,G,+G,)h

Goly=,

26.2 Zylinder, Kegel, Kegelstumpf, Kugel, Kugelteile

Zylinder

Kegel

Kegelstumpf

V=%7T(R2+R-r+r2)h
M=n(R+r)s
O=nR>+nr*+M
s=vh2+(R-r)?
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Kugel

V= %71’7‘3
O = 4nr?

Kugelausschnitt

V= %ﬂrzk
O = nsr+2nrk
N
k=r—-nh

S

Kugelabschnitt

V= %ﬂk2(3r—k)
O = ns* + 2nrk
NNy
k=r—nh

G
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