Aufgaben: Integration

Teil 3: Aufgaben mit Parametern und dynamische Aspekte der Integration

Aufgabe 1. a) Bestimmen Sie den Parameter jeweils so, dass der Graph der Funktion mit der x-Achse eine Fläche mit dem angegebenen Flächeninhalt hat:

1)
$$f_a(x) = ax^2 + 2$$
, $A = \frac{16}{3}$

1)
$$f_a(x) = ax^2 + 2$$
, $A = \frac{16}{3}$ 2) $f_a(x) = a - \frac{1}{a}x^2$, $A = \frac{4}{3}$

3)
$$f_a(x) = \frac{1}{a^3}x^3 - ax$$
, $A = 4$

3)
$$f_a(x) = \frac{1}{a^3}x^3 - ax$$
, $A = 4$ 4) $f_a(x) = ax^2 - \frac{1}{1-a}x$, $A = \frac{1}{24}$

- b) Gegeben sind die Funktionen $f(x) = x^2$ und $g_a(x) = a x^2$
 - 1) Formulieren Sie eine Bedingung für den Parameter a, sodass f(x) und $g_a(x)$ tatsächlich eine Fläche einschließen.
 - 2) Berechnen Sie a, sodass der Inhalt der Fläche aus 1) den Wert $A = \frac{8}{3}$ hat.

Aufgabe 2. a) Zeigen Sie dass für 0 < k < 1 der Inhalt der Fläche zwischen dem Graphen von $f_k(x) = kx - \frac{1}{1-k}x^2$ und der x-Achse ein lokales Maximum besitzt. Berechnen Sie dieses und zeigen Sie damit, dass zu $k = \frac{3}{5}$ der Flächeninhalt $A = \frac{18}{3125}$ gehört.

- b) Berechnen Sie einen Parameter a > 0, sodass die Fläche zwischen den Parabeln $f_a(x) = ax^2 - ax$ und $g_a(x) = -ax^2 + \frac{1}{a}x$ den kleinsten Flächeninhalt hat.
- c) Berechnen Sie einen Parameter b > 0, sodass die Fläche zwischen dem Graphen von $f_b(x) = bx(x^2 - 9)$ und der Winkelhalbierenden im ersten Quadranten minimal wird.
- d) Berechnen Sie einen Parameter a > 1, sodass die Fläche zwischen dem Graphen von $f_a(x) = ax - (1-a)x^2$ und der x-Achse minimalen Inhalt hat.
- e) Berechnen Sie die Parameter k > 3, sodass die Fläche zwischen $f_k(x)$ und der x-Achse ein lokales Extremum besitzt? Begründen Sie, warum es sich jeweils um ein absolutes Extremum handelt, und entscheiden Sie, ob es dann ein Maximum oder ein Minimum ist:

1)
$$f_k(x) = \frac{1}{9}(3-k)x^2 + k$$
 2) $f_k(x) = kx - \frac{1}{9}(k-3)x^3$

2)
$$f_k(x) = kx - \frac{1}{9}(k-3)x^3$$

Aufgabe 3. Berechnen Sie den Integralmittelwert \bar{I} der Funktion f(x) im angegebenen Intervall [a, b]. Bestimmen Sie dazu jeweils einen Wert c, sodass $f(c) = \bar{I}$

a)
$$f(x) = x^2$$
, $[0,3]$

a)
$$f(x) = x^2$$
, $[0,3]$ b) $f(x) = x^2$, $[-3,3]$ c) $f(x) = x^3$, $[0,2]$

c)
$$f(x) = x^3, [0, 2]$$

d)
$$f(x) = x^3, [-2, 2]$$

e)
$$f(x) = x^3, [-2, 0]$$

d)
$$f(x) = x^3$$
, $[-2, 2]$ e) $f(x) = x^3$, $[-2, 0]$ f) $f(x) = x^2 - x$, $[0, 2]$

g)
$$f(x) = x^2 - x$$
, $[-2, 0]$ h) $f(x) = x^2 - x$, $[-2, 2]$

Adresse: Eduard-Spranger-Berufskolleg, 59067 Hamm

E-Mail: mail@frank-klinker.de Version: 22. September 2025

- **Aufgabe 4.** a) Geben Sie begründet eine Klasse von Funktionen an, für die der Integralmittelwert auf jedem Intervall $[-x_0, x_0]$ durch $\bar{I} = 0$ gegeben ist.
- a) Geben Sie begründet eine Klasse von Funktionen an, für die der Integralmittelwert auf jedem Intervall $[-x_0, x_0]$ durch $\bar{I} = \frac{2}{x_0} \int_0^{x_0} f(x) dx$ gegeben ist.
- **Aufgabe 5.** a) Die Funktion $\Phi(t) = -t^2(t-2)$, 0 < t < 2 beschreibt die Durchsatzrate eines Switches in der Einheit $3\frac{Tbit}{h}$. Die Zeit t wird dabei in Stunden gemessen und gibt den Zeitraum 8:00 Uhr bis 10:00 Uhr wieder.
 - 1) Berechnen Sie die Datenmenge zwischen 8:30 Uhr und 9:30 Uhr.
 - 2) Berechnen Sie die Datenmenge auf dem gesamten betrachteten Zeitraum.
- b) Die Geschwindigkeit eines Testfahrzeug wird fünf Stunden lang untersucht und mit Hilfe der Funktion $v(t) = 0.1t^3 0.7t^2 + 1.2t + 0.2$ modelliert. Dabei wird t in Stunden gemessen und f(t) in der Einheit $100\frac{km}{h}$.
 - 1) Berechnen Sie die Strecke, die zwischen der zweiten und dritten Stunde zurückgelegt wurde.
 - 2) Berechnen Sie die mit Hilfe des Integralmittelwertes die Durchschnittsgeschwindigkeit \bar{v} auf dem gesamten Messintervalls.
 - 3) Der Wert aus Aufgabe 2 beträgt $\bar{v} \approx 49,17 \frac{km}{h}$. Bestimmen Sie, wann dieser Wert tatsächlich erreicht wird, und interpretieren Sie das Ergebnis im Sachzusammenhang.