Loading...
 

Shaker Verlag, Düren 2025
172 Seiten, 90 Abbildungen

Joint Work with V. Kell

Details zum Buch

(From Divisibility to RSA Cryptosystems)

Lecture Notes, 47+ii pp, pdf (German)

Joint Work with L. Mischke, W. Pöttker

(Elementary Cartography)

Textbook, (German) - in progress

(Elementary Analysis: A Three-Term Course)

Lecture notes, 343 pp, pdf (German)

(Differential Geometry I: Curves and Surfaces)

Lecture notes, 130 pp, pdf (German)

(Preliminary course in mathematics)

Lecture notes, 105 pp, pdf (German)

(Linear algebra on spaces with anti-commuting coefficients)

Lecture notes, 29 pp, pdf (German)

(Linear algebra on spaces with anti-commuting coefficients)

Notes from a lecture given at a joint seminar of the groups Differential Geometry and Theoretical Physics III, TU Dortmund

Lecture notes, 14 pp, pdf

(Useful properties of Möbius transformations)

pdf (German), 5 pp

(On the property \( (AB)^{+} = B^{+}A^{+} \) of the Moore-Penrose Inverse)

pdf (German), 5 pp

(Trace free matrices as commutators)

pdf (German), 9 pp

(The Gauß line)

pdf (German), 4 pp

(An efficient way to calculate a basis of sum and intersection of two vector spaces)

pdf (German), 4 pp

Int. J. of Sci. Research in Mathematical and Statistical Sciences 6 (2019) no. 6, 1-13

Journal or arXiv

Joint Work with L. Fischer, T. Günther, L. Herzig, T. Jarzina, S. Hano, F.-G. Schürmann, M. Wollek

Abstract:

Arab. J. Math. 8 (2019) no. 1, 55-62

Journal or arXiv

Joint Work with C. Reineke

Abstract:

São Paulo J. Math. Sci. 13 (2019) no. 1, 370-379

Journal or arXiv

Joint Work with C. Reineke

Abstract:

Math. Semesterber. 64 (2017) no. 1, 25-39

Journal or arXiv

Joint work with R. Gäer, Schniewindt GmbH & Co. KG and C. Eggert, ThyssenKrupp Rothe Erde GmbH

Abstract:

Int. Electron. J. Geom. 8 (2015) no. 1, 94-104

Journal or arXiv

Abstract:

Bulg. J. Phys. 41 (2014) no. 2, 130-141

Journal or arXiv

Abstract:

J. Geom. Phys. 86 (2014) 534-553

Journal or arXiv

Abstract:

Adv. Appl. Clifford Algebr. 24 (2014) no. 3, 737-768

Journal or arXiv

Abstract:

(An optimized smoothing method motivated by a technical problem)

Math. Semesterber. 59 (2012) no. 1, 29-55, German

Journal or arXiv

Joint work with G. Skoruppa, in cooperation with W. Kranz, Kranz Software Engineering

Abstract:

J. Geom. Phys. 61 (2011) no. 12, 2293-2308

Journal or arXiv

Abstract:

Math. Semesterber. 58 (2011) no. 1, 97-107

Journal or arXiv

In cooperation with S. Pohlschröder

Abstract:

Int. Electron. J. Geom. 2 (2009) no. 1, 55-73

Journal or arXiv

Abstract:

Differential Geom. Appl. 26 (2008) no. 5, 566-582

Journal or arXiv

Abstract:

J. Math. Phys. 48 (2007) no. 11, 113511, 26 pp

Journal or arXiv

Abstract:

SIGMA, Symmetry Integrability Geom. Methods Appl. 2 (2006) Paper 077, 28 pp

Journal or arXiv

Abstract:

Comm. Math. Phys., 255 (2005) no. 2, 419-467

Journal or arXiv

Abstract:

Technische Universität Dortmund, 2013 (Advisor: Prof. Dr. Lorenz Schwachhöfer)

Abstract: In this work, we systematically analyze supersymmetry on solvable Lorentzian symmetric spaces. We provide explicit conditions under which spinor connections admit supersymmetry by describing the underlying Lie bracket structure. We introduce the necessary notions and tools for flat connections and, on this basis, establish that in all dimensions up to eleven, nontrivial and at most canonically restricted irreducible supersymmetries exist. Moreover, we extend the examples known from the literature to a complete classification and supplement it with a full catalogue of N=2 extended natural supersymmetries.
By presenting further examples—including cases with N>2, non-natural, non-canonically restricted, and non-flat supersymmetries—we illustrate how our framework applies to the general situation. In particular, we demonstrate that in any dimension admitting an irreducible super extension, a nontrivial 3/4-restricted supersymmetry is possible.

Universität Leipzig, 2003 (Advisor: Prof. Dr. Hans-Bert Rademacher)

Abstract: In this thesis, we combine the notions of supergeometry with supersymmetry. We construct a special class of supermanifolds whose reduced manifolds are (pseudo-)Riemannian manifolds, thereby allowing vector fields and spinor fields to be treated as equivalent geometric objects. This serves as the starting point for our definition of supersymmetric Killing structures.
The latter combines subspaces of vector fields and spinor fields, provided they satisfy certain field equations. This naturally leads to a superalgebra that extends the supersymmetry algebra to the setting of non-flat reduced spaces.
We examine in detail the additional terms that arise in this structure, the so-called center of the supersymmetric Killing structure. Furthermore, we provide numerous examples, emphasizing those in which the center takes a particularly simple form.

(Connections on Principal Bundles and Instantons on S⁴)

Universität Osnabrück, 2000 (Advisor: Prof. Dr. Heinz Spindler)

Abstract: In the first part of the thesis, the various concepts of connections in differential geometry are examined. It is shown that connections on manifolds and on vector bundles are in one-to-one correspondence with those on principal bundles.
The second part focuses on a special class of connections: the self-dual connections on SU(2)-principal bundles over the four-sphere S4 with integral second Chern class c2=−k. These are the k-instantons.

(Kepler's barrel rule and numerical quadrature)

2010, 28 pp, pdf (German)

A preprint of sections 1+2 has been published in Mathematik-Seminar des Freistaates Sachsen, Heft Sayda, Leipzig, 2001.

Abstract: Wir präsentieren hier einen Vorschlag für eine motivierende Einführung in die Volumenberechnung mit Integralen sowie in die Theorie der Quadraturformeln. Der Übergang zwischen beiden Schwerpunkten erfolgt durch eine ausführliche Diskussion der Keplerschen Fassregel.
Der Text richtet sich einerseits an Lehrende im Übergangsfeld zwischen Schule und Studium, und andererseits an mathematikinteressierte Schülerinnen und Schüler mit Grundkenntnissen über Zahlenfolgen sowie in der Differentialrechnung.
Die Kapitel 1 und 2 basieren auf einer erprobten Lehreinheit im Rahmen eines Wochenendseminars der Leipziger Schülergesellschaft für Mathematik in Bennewitz (Oktober 2000). Die vorliegende Fassung stellt eine erweiterte Ausarbeitung eines Seminars im Schülerzirkel der Technischen Universität Dortmund (September 2009) dar.

(Appendix to "Polynomial poly-vector fields")

2008, 22 pp, pdf

Abstract: We present a complete list of quadratic Poisson structures in dimension four.
For details on the decomposition of quadratic Poisson structures see Paper.

(Appendix to "Supersymmetric Killing structures")

2003, 4 pp, pdf

Abstract: We use the notations introduced in [Klinker, F.: Supersymmetric Killing Structures] to explain how we derive the signs cf. Table 3 therein. The calculations below constitue an extended version of the calculations for the Lorentzian case are based on [Scherk, J.: Extended supersymmetry and extended supergravity theories].

2002, 7 pp, arXiv:math.DG/0212058

Abstract: In this note, we compare the spinor bundle of a Riemannian manifold (M = M1 ×· · ·× MN , g) with the spinor bundles of the Riemannian factors (Mi, gi). We show that - without any holonomy conditions - the spinor bundle of (M, g) is for a certain class of metrics isomorphic to a bundle obtained by tensoring the spinor bundles of (Mi, gi) in an appropriate way. For N=2 and a one dimensional factor, this construction was developed in [Baum 1989a]. Although this fact for general factors is frequently used in the physics literature, to the best of our knowledge, a proof has been missing.